
Wikitree: Wikipedia Mapping Companion

ABSTRACT
Wikitree is a web application built to help undergraduates
with their research. Wikitree tracks and organizes the user’s
browsing history through Wikipedia articles. Wikitree is
unique because it emphasizes mental connections the user
makes. Wikitree aims to stay adaptable for each individual’s
research goals. Our research and user testing revealed many
struggles undergraduates have. They struggle to dive deep
into one topic while staying aware of the big picture. They
struggle to mentally categorize connections between different
topics during early stages of research. They struggle with
feeling overwhelmed by the amount of material encountered,
and finding a clear vision within. Wikitree acts as an aid for
the user in tracking their explorations. The visualization helps
users maintain a high level overview, preventing them from
feeling overwhelmed, getting sidetracked, or losing sight of
their goals.

Author Keywords
Wikipedia, network, force-directed layout

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Research can often result in sprawling journeys with cyclical
and branching explorations involving backtracking and
falling down rabbit holes. At the end of these journeys a
user’s browser window may be crammed with open tabs,
each with their own long navigation history. Both tabs and
history are serial, linear paradigms, and fail to represent the
full shape of ground covered during research.
Wikitree aims to more effectively map these journeys.

Motivation
Research is rarely limited to a single source. Whether an
undergraduate student reading a Wikipedia article or a scholar
reading a research paper, people in the process of learning
usually need to read related works in order to gain a larger
understanding of the concepts they’re studying.
We believe research journeys can be accurately mapped with
directional networks. We want researchers to be able to stay
in their flow state of digging and exploring, while also
holding a big-picture overview of their progress. In this way,
people can dive deep while simultaneously maintaining
perspective.

Why Wikipedia?
Wikipedia is a modern exemplar of our species' increasing
democratization of knowledge. Historically, knowledge has
been limited to those with the privilege and resources for
academic training. Even within the last century, encyclopedia
collections have been prohibitively expensive. Public
libraries help ease this barrier by offering free access to
reference materials. However, only with Wikipedia is the
largest, most cutting-edge encyclopedia now available for
free to anyone with a basic computer and Internet connection
(both increasingly ubiquitous resources).
While navigating Wikipedia, each article has many keywords
hyperlinked to other relevant Wikipedia articles. This allows
a single article to be supplemented by the content of similar
articles, so a user can begin on one topic and move outwards,
digesting whatever contextual information is necessary to
reach personal comprehension.
However, this branching navigation is difficult to capture
with browsers. Modern web browsers have windows, tabs,
and navigation history which can all hold separate articles in
their own way. However, these tools are relatively flat (in the
case of windows and tabs) or linear (in the case of navigation
history). A user can save a few key articles, but the full
breadth and depth of their exploratory learning may be lost.
This project aims to create a map of the user's navigation
through Wikipedia articles, while preserving the native
Wikipedia experience. It will create a visualization which
records the user's journey as well as providing an overview of
the concepts they've explored. The primary goal is to
facilitate comprehension and retention. The secondary goal is
to increase engagement, helping learning feel like the
adventure it truly is.

Alexander G. Burner
Information School

University of Washington
Seattle, WA 98195-2840

aburner@uw.edu

��� (remove for camera-ready copy)1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

mailto:aburner@uw.edu

Approach
We display the research map and article reader side-by-side,
so the user can access both simultaneously. The research map
updates as the user clicks through links in the current article.
The map serves as navigation: clicking a node loads the
represented article into the reader. The map can also be
curated, with popover controls for pinning nodes, removing
nodes, and breaking links. Sessions are saved and displayed
in a pop-out sidebar, so the user can pause and resume
multiple projects.
We use the D3.js force-directed graph layout to render the
nodes and links. We use Wikipedia’s MediaWiki API to fetch
title suggestions, article content, category pages, and full
search results. We display the Wikipedia article content in an
HTML iFrame element and bring in Wikipedia’s own
stylesheets to give the articles a native look and feel. We use
DOM Local Storage to save sessions to the browser. We use
AngularJS as our client-side framework and Node.js with the
Express framework as our server, hosted on a DigitalOcean
droplet.

RELATED WORK
There are many projects with relevance to both assisting
research and exploring Wikipedia (although not so much for
both simultaneously). We explore a few examples here.

Refinery: Visual Exploration of Large, Heterogeneous
Networks through Associative Browsing
Refinery [4] is a tool built to encourage and facilitate
“exploratory information-seeking” behavior. It uses
“associative browsing” to help users start with familiar
information and move into new areas of discovery. Refinery’s
primary focus is large, heterogeneous networks containing
many forms of media (people, papers, presentations, images,
videos, etc). Their interface integrates text queries with
suggestions, control panels for keyword refinements, and a
D3-powered force layout graph for displaying interlinked
search result nodes (as well as an alternate “list view” for
more fine-grained detail). Refinery’s emphasis on suggesting
new data and supporting serendipitous discovery is very
interesting. We would like to adopt this emphasis on
exploration and introduce our own form of article
suggestions.

��� (remove for camera-ready copy)2

Figure 1. The Wikitree user interface running in a web browser. The network graph article node map takes up the left portion of
the interface, while the document article reader takes up the right. Each node represents a Wikipedia article, and the directed edges

between them represent inter-article links clicked by the user. Arrows on each edge indicate source and target of link clicks.

Apolo: Making Sense of Large Network Data by
Combining Rich User Interaction and Machine Learning
Apolo [2] is a tool for extracting knowledge from large
network datasets. Similar to Refinery, it is focused on
discovery of new information. Also similar to Refinery, it
uses machine learning to adapt to the user’s queries and
exploration patterns. However it only leverages homogenous
networks (scholarly articles). Apolo allows many user
interactions with the graph, such as starring, annotating,
pinning, selecting, and hiding nodes, as well as creating node
groups. These seem like strong control structures that would
give the user a feeling of empowerment over the graph
they’ve generated. We would like to bring similar features
into our project.

Infobaleen Wikipedia Map
The Infobaleen [6] Wikipedia Map is a project that attempts
to cluster Wikipedia articles by analyzing their network
structure using the Infomap network analysis software
package [3]. The map allows top-down browsing: starting
with large clusters and digging inwards, and also bottom-up
browsing: searching for a particular article and diving to its
depth, then viewing related articles or “zooming out” to
higher levels of clustering. The map is a hybrid of a treemap
(nesting clusters) and network graphs (between clusters). It
emphasizes the structure of Wikipedia, and doesn’t display
full article content. Our project will focus more on the user’s
own generated structure, and allowing perusal of full articles
with native Wikipedia markup and styles. However we are
interested in the clustering and think this could be a useful
feature for helping our users organize their article nodes.

Local Wikipedia Map
Local Wikipedia Map [5] leverages the interconnectedness of
Wikipedia articles. It allows the user to choose 2-5 Wikipedia
articles and then displays a network graph of shared articles
between them. The project uses data from DBPedia and
crawls many levels deep to find new articles that are shared
by the user’s chosen set. The resulting map both reveals the
interconnectedness of the chosen articles and offers the user a
chance to explore new articles they may find in the generated
common pool. We are interested in this tool’s ability to
traverse multiple degrees away from current/selected articles
and form connections using relatively distant articles and link
paths. This could be a useful feature for our project’s
suggestions: finding how a current article is indirectly linked
to other articles in a user’s current graph.

METHODS
Here we will discuss the methods that went into the creation
of Wikitree. We will talk about the goals we held in the
design of the project, the technologies we used to create the
project, and the features we implemented in the project’s
construction.

Design Goals
The main goal for Wikitree’s design was to keep it simple and
intuitive. With most projects, the challenge is not thinking of
new features, but selecting from the flood of potential
features spilling in. There were many different things we
could have done with Wikitree, and so we made a
concentrated effort to only add the most essential ideas. We
wanted to keep the interface clean, so that a new user was not
overwhelmed. We wanted our controls to be intuitive, so a
new user could quickly pick up the application and get to
work, without a significant learning curve. We were forced to
balance our desire for simplicity with the need to give users
full control, so a more advanced user would not feel limited
or hampered by a lack of interaction.
But, the goal of “simple and intuitive” is true for any piece of
software with a user interface. Our core design vision for
Wikitree specifically was to make it a research assistant for
the user. A successful research assistant suggests new
material and organizes existing content. Due to time
constraints, we did not push deeply into the area of
suggesting new content (see Future Work for more).
However, we did make sure the user was unimpeded in
fetching new content for themselves. We provide easy access
to Wikipedia’s title suggestion and full search capabilities
(see Technologies and Implementation for more) for bringing
in any articles from Wikipedia, and the purpose of Wikitree
itself is to encourage inter-article link clicking within articles,
and bring in this new content while maintaining easy access
to the your starting points. For organization, we rely on a
two-dimensional network to display the travels of the user
(see Technologies) and give them the ability to rearrange and
curate this to their whim (see Implementation).
As part of our vision for Wikitree, we wanted it to be an
unhampered portal into the actual research content (in this
case, Wikipedia). To those ends, we split the screen, giving ⅗
to the article reader and the remaining ⅖ to the map (giving
the content some priority over the graph). We also strived to
make the article reader match Wikipedia’s native content.
(More on this in Technologies and Implementation). We
wanted the application to stay out of the user’s way, letting
them find their research flow state.
We wanted Wikitree to allow the user a big-picture overview
of the content they’ve been exploring. Unlike a simple list,
we didn’t want to just give them access to the locations
they’ve visited. We wanted to provide structure in the record
of their journey. We wanted it to be a useful map that both
showed them where they had been and also gave them a high-
level perspective of the areas they’ve been exploring.
Research itself is done on the ground, walking through pages.
We wanted the user to also have a bird’s-eye view of their
trails.
Another important design aspect was curation and cleanup.
We wanted the user to feel free to explore, without fear of
making wrong turns. To this end, we put in place controls to

��� (remove for camera-ready copy)3

allow users to arrange nodes for themselves, as well as
remove any unwanted nodes or links from the graph (see
Implementation for more). These controls encourage the user
to take an active role in the creation of their map. It is not just
a passive record of their journey, but a living document they
can engage with and alter as they see fit. That being said, the
user cannot add links that don’t exist (you must click an
actual article link, ensuring that the map only shows true
paths from Wikipedia’s larger network of interconnections).
We wanted to make accidents cheap, so the user could
explore fringe articles without them permanently adding to
the clutter of the map. We wanted to encourage the user to
keep their map clean and useful, to craft it into something
they felt was their own.

Technologies
We built Wikitree as a web app. This was an obvious move
for our team, both in terms of the tool’s context and our own
resources. In terms of context, the Wikitree tool is a
visualization of Wikipedia, itself a web site. Wikipedia shares
their content via the MediaWiki API [7], easily accessible
through JavaScript’s AJAX techniques. In terms of our team,
both developers (James and I) have the bulk of our
experience building web applications. The web itself has
many advantages (and drawbacks) as an app platform, too
numerous to dive into here. As a web app, Wikitree is built on
HTML, CSS, JS, and SVG. Our tool essentially exists to glue
together the D3 Force-Layout graph [7] and the MediaWiki
API. Its server-side is built on Node.js and Express, and its
client-side is built on AngularJS and jQuery. The JS DOM
localStorage interface is used to save and restore serialized
versions of the user’s graph “sessions”. The Bootstrap library
was used for basic buttons and other HTML+CSS
components, along with the FontAwesome library for icons.
We use the D3 Force-Layout graph to display a user’s
journey through Wikipedia articles. Each article visited
appears as a node in the graph, and each link followed is a
directed edge between two nodes. The Force-Layout allows a
relatively even distribution of the nodes. The layout uses an
approximation of four physical laws: each node has an
electric charge (so they repel), they all share a common center
of gravity (so they stay collected around a center point), each
link is a spring (to allow for more flexible arrangements when
things get crowded) and the overall simulation has air
resistance (so the nodes don’t drift forever, allowing the
graph to come to a graceful halt and save on CPU
processing).
The D3 Force-Layout graph uses SVG elements to form the
nodes and links. This allowed us to leverage native browser
DOM events to track user actions such as mouse hovers and
clicks, per each element in the visualization. Using a
technology such as canvas would have meant we could only
listen for these events on the entire canvas, and then would
have needed a scene graph to derive which element was the
user’s target. D3 trusts the SVG DOM to be its own scene

graph. We also added an HTML layer on top of the SVG
nodes and links for enhanced user controls (see more about
the popovers in Implementation).
D3 also offers a number of helpful utility functions, such as
cross-browser event listeners that can work for both mouse
and touch events. We also utilized their zoom behavior, so the
user can scale and pan the graph. This allows them to zoom
in and get details on small areas, or zoom out and get a large
overview of the general structure they’ve put together.
For content, we used Wikimedia’s MediaWiki API to access
Wikipedia’s materials. Four of their endpoints were of
particular interest. Central was their Parse endpoint, which
accepts an article title as a parameter and spits out the
formatted HTML if a match is found. This endpoint only
works with exact title matches, so we paired it with the
Opensearch endpoint, which returns article title suggestions
based on string fragments (so sending it “sugges” would
return an array of strings such as “suggestion”, each the
proper title of a Wikipedia article). This helped users find
exact title matches for the words they were seeking.
However, users occasionally reach beyond even Wikipedia’s
massive collection of article titles, and so we also integrated
their Search API, which accepts a query and returns results of
a full-text search of articles. Fourth and finally we hooked up
to their Query API which allowed us to get subcategories and
member pages for a given category (as the Parse API didn’t
return full category pages, only the descriptions).
We displayed Wikipedia content in an iFrame, allowing us to
use Wikipedia’s full stylesheets without their CSS interfering
with our own app’s styles. The iFrame contained Lodash
templates for mimicking the Wikipedia markup of articles,
category pages, and search results. We wanted users to feel
they had a complete and unhampered Wikipedia experience,
so we worked hard to ensure that Wikipedia’s native styles
were preserved. The iFrame captures user click events and
evaluates their target, deciding whether to extract an article
title and return it to the main Wikitree application, or pop
open a new tab for unhandled links (such as File pages or
external sites).
We used AngularJS as our client-side framework. In
Wikitree’s current version, the entirety of the application
logic occurs client-side, so we needed a robust framework
that could organize our code effectively. We found Angular to
be helpful in many ways. However, it was also difficult,
especially when it came to syncing events and data across
otherwise distant application modules. We will be
considering other libraries for future versions of Wikitree.
We used Node.js and Express for Wikitree’s backend.
Currently, Wikitree is entirely a client-side app, so any web
file server would have been fine. However, we plan to add
support for server-side user accounts and session saving (see
Future Work for more). When that time comes, the Node app
will be given a larger responsibility.

��� (remove for camera-ready copy)4

Implementation
Wikitree has 4 major interface components: the welcome
page, the map, the reader, and the saved sessions sidebar.
These are divided into two pages, the welcome page on its
own and the other three existing as three columns in the main
page. The sessions sidebar is designed to mostly exist out of
site, and only slides in when called by the user. The map and
the reader are both always visible, and start with a 2:3 split of
the screen. The user can resize this divide, giving more space
to the map or reader as desired.
The welcome page is designed in the form of the Google
homepage: simple and to the point. The user is presented with
the Wikitree name and a large search bar, inviting them to
find a Wikipedia article. In the background, an automated D3
force-layout graph unfolds. It is randomly generated, 200
nodes are slowly added, each popping out linked from a
randomly chosen node that’s already been inserted (except, of
course, for the first node). This animation serves to both
entertain new users and demonstrate the capabilities of
Wikitree. During user testing (see Results for more) many
users only followed the article links in a straight line. The
hope of the animation is that it will help to illustrate the
branching nature of the tool.
The map is the core of the information visualization. It is the
extra functionality we add on top of the normal Wikipedia
experience. As explained in Technology, we use the D3 force-
layout graph to represent each article as a node and the user’s
inter-article navigation as directed edges between them. The
nodes themselves are very simple, just a white disc with the
article title. Initially, we tried represent each article with
small tiles, containing title, an image, and the introductory
paragraph. This seemed reasonable on paper: we would give
the user enough information to simply read the map and learn
about its content. However in practice the tiles provided too
much clutter, and the overall effect was overwhelming. The
simple disc nodes, originally intended as temporary
placeholders, are now permanent. The links between the
nodes are represented with dashed lines. This was another
feature that started as a temporary experiment, but was
appreciated by users during testing (see Results for more).
The dashed lines gave increased feedback to the “bounciness”
of the graph structure, which many users enjoyed. The
bounciness itself had to be carefully balanced using D3’s
force-layout parameters. Too much bounciness was
distracting, but too little and the graph felt sluggish.
We added an additional layer of user controls over the force
layout graph. The nodes themselves were clickable, serving
as links to the articles they represented (opening them in the
adjacent reader). They could also be dragged into new
positions, which would “pin” them in place (using D3’s
“fixed” attribute). This allowed users to arrange maps to their
own liking. The new layer we added was a set of HTML
“popovers” containing buttons allowing for additional node
controls. Standard node popovers had buttons for toggling
their pin state and removing them from the graph. Link

popovers had a button for breaking the link between two
articles. Note node popovers had a third button for entering
“linking state” (discussed further in the next paragraph). This
additional layer of popover controls gave users an increased
degree of control over the graph, while keeping controls
unobtrusive until the moment they were needed (the popovers
being hidden until the relevant node or link element is
hovered over).
Our most recent addition to the graph is the “note nodes”
which allow annotations of the graph. These are nodes that
behave similarly to the standard nodes. However, they are
user-created, and can have both titles and body text, allowing
for more information to be displayed in the graph. Instead of
a circle, they are represented by an icon resembling a piece of
paper. In addition to adding text, the note nodes can be linked
at will to other nodes (both standard and note). The links are
colored blue instead of grey, for differentiation. The note
nodes are linked via their third popover button, which toggles
a “linking” state in which a link attaches to the user’s mouse
cursor (actually an invisible node following the mouse).
During this state, any node the user clicks will be linked to
the source note node. The user can click any number of
nodes, and ends the linking state by clicking anything that is
not a node (or by pressing the escape key on their keyboard).
This linking allows the user to “wrangle” together nodes,
forming new shapes in the graph layout. For example, they
could pull together all nodes that represent capitol cities, or
geographical features, or musical techniques. In this way, the
notes can behave as a form of local categorization. The note
nodes become both textual annotations, as well as spatial.
The next interface component is the reader. As discussed in
Technology, we took care to make the reader accurately
simulate the native Wikipedia experience. The reader has an
iFrame that displays the MediaWiki API results, as well as
search bar for “teleporting” in new Wikipedia content.
Anything from the reader search bar is brought in
disconnected from other nodes (though the user can connect
them all together if they’re able to follow corresponding
links). If the user enters a direct article title match, that article
is displayed. Otherwise, they’re given the Wikipedia full-text
search results for that term, as its own node. In this way they
can investigate each search result and return to the full list at
any time, as they’re all available in the map (or, if they find
one correct result, they can easily delete the search results
node). Currently the editor for note node content is placed in
the article reader (sharing a horizontal split with the article
content itself). However, users found this very confusing (see
Results) and note editing functionality will likely be moved
to a larger popover available for each note node.
The final interface component is the sessions list. Each search
initiated from the welcome page begins a new session, and all
inter-article link navigation and searches stay within that
session. The user can pop open the sidebar to see a list of all
their sessions. These can be renamed, deleted, and reordered

��� (remove for camera-ready copy)5

(by dragging). The sessions allow users to have multiple
simultaneous research projects.

RESULTS
We performed user studies during multiple stages of
Wikitree’s development. These included preliminary research
interviews, paper prototype testing, and user testing of
Wikitree in various stages of completeness. Our user testing
centered around “think aloud” studies where we sat a user
down with the Wikitree tool and had them accomplish simple
tasks (and freely explore the system) while vocalizing their
cognitive process. Through these testing sessions we found
both good and bad qualities.
There were many attributes of Wikitree the users enjoyed.
Users enjoyed the clean, simple aesthetic. Many liked the
bounciness of the force graph, perceiving it as lively and
engaging. User enjoyed the ease of entry: the overall concept
of the tool was intuitive to most, and to some it seemed so
obvious they were surprised it didn’t already exist. Users
enjoyed the branching aspect, as many started with simple
trails and were delighted to see they could navigate back and
start new branches off of older nodes. Users had fun trying to
loop back on themselves. Users enjoyed the native Wikipedia
look and feel. Users appreciated that their sessions were
saved and awaiting their return. Almost all users we spoke
with sympathized about the Wikipedia “rabbit hole” (getting
distracted during research and pursuing long link trails) and
the issue of having an unmanageable number of tabs open
(one user at the 512 presentation night declared “I literally
have 12 Wikipedia tabs open on my computer right now”).
There were also many shortcomings discovered. Some
shortcomings were system bugs and interface tweaks. For
example, many users tried to use the built-in browser back
button to travel to the previously visited article, which we had
not hooked up (and, it turns out, a recent routing upgrade
caused our system to handle it poorly, generating new
sessions each time). No users intuitively understood the
meaning of the dot when an article is “pinned” and many
struggled with how and when pinning occurs (nodes are
pinned after they’re dragged). The node popovers were
finicky and some users struggled to reach their buttons. The
location of the note node editor was confusing, and
overlooked by many (in the future, it will be added as an
additional popover).
Other shortcomings were larger, with users wishing for things
that would require significant development. Users wished for
suggestion nodes that indicated where to travel next (and
raised interesting questions about whether the suggestions
should lead them deeper into similar articles or purposefully
bring them into new but related areas of study). Users wished
there was some indication of inter-node relevancy in the map,
other than their own links (such as being able to see all links
between nodes present in the Wikipedia network, or some
sort of clustering based on relevancy). Users wanted a way to
share the maps they created with others. Users wanted an

indicator of which node they originated from. Users wanted
indications of time: when was a node added? When was it
last accessed? Users wanted to break out of the Wikipedia
ecosystem and use it for general web browsing, or a larger
scale of research. Users wanted more solidity and structure
for the map, fearing that the network was too fluid and would
result in their mental model being continuously deprecated as
node positions shifted. These are discussed further in section
Future Work.
General shortcomings in the system became apparent both
through user testing and our own use. The network is prone to
over-linking, and can easily become a tangled hairball if not
pruned. The same is true of the note nodes, which can be
useful if linked to nodes that are already nearby, but can bring
clutter if linking nodes that are at distant areas in the graph
(as the springiness of the links will pull the graph together).
The entire system becomes sluggish and choppy with 20-50
nodes added, depending on what computer we’re running it
on.
Overall, we determined Wikitree as effective through the
engagement users showed. As mentioned, many users
sympathized with wandering through Wikipedia, and they
were excited to have a map that could chart their journey.
Without much prodding, users were happy to sit down and
click around and build maps for themselves (they especially
enjoyed the challenge of finding a way to loop back on
themselves). A significant majority of users expressed interest
in accessing the tool on their own time and were excited to
learn that a public alpha is available online. There is much
work to be done, but we’re on the right path.

DISCUSSION
Wikitree shows the user more about what they already know.
As one user said, “you can see how things connect together in
a more concrete way.” Wikitree seems to successfully reveal
patterns in interlinked data as a user’s journey unfolds.
During testing, users uncovered neighborhoods of related
articles (such as the cloud around Systems Theory and
Emergence). It seemed that users were successfully
encouraged to dig deeper, to fill out their map without fear of
getting lost.
However, there were also many shortcomings. As mentioned
in Results, the network diagram turned into an unmanageable
hairball with too much interlinking. The diagrams were only
interesting (and more importantly, readable) to a certain level
of complexity. Also, users wished for more encodings about
the content of the map. They wanted richer details about what
they had already visited, and more information about the
larger context of the areas they were moving through (more
in Future Work).
Another revelation, somewhere between shortcoming and
insight, was the structure of Wikipedia itself. Many articles
have an overabundance of links, and as such there were
surprising proximities. Users may move quickly through

��� (remove for camera-ready copy)6

radically different topics, but by the few short links between
them on the graph they would appear more related than they
actually were. Here again, more analysis of Wikipedia’s
content and some sort of structuring to reflect this could help
the user gain more accurate insights into the knowledge
structures they’re moving through.

FUTURE WORK
There is much work to be done with Wikitree, both in terms
of its current implementation and in new directions the
platform can be taken. The current implementation has room
for both iterative improvements in its current feature set, as
well as expansion with interesting additional features. New
horizons also exist for the platform, taking the interface itself
beyond the bounds of Wikipedia.
In terms of iterative improvements, there are many upgrades
that could be made to the current implementation. Server-side
user accounts and sessions storage would allow users to
access their sessions from multiple devices. It would also
give us a corpus for examining user patterns and deriving
new node suggestions based on human behaviors. Server-side
data storage would also allow us to implement sharing
sessions, either through passing a copy or opening common
access. Passing a copy would allow receiving users to make
their own changes, without affecting the original creator’s
session. We could also track the spread of shares and
manipulations, which could allow us to measure the “clout”
of a given session (more shares more clout, and perhaps with
more complex measures for how many derivative works it
inspires?). Common access sharing could allow live
collaboration, similar to a project group sharing a Google doc
to collect their findings.
There are also many iterative encodings we could work into
the current graph. As one user mentioned, it would be useful
to know how long it was since he last visited a given node. To
support this, node opacity could be adjusted with last time
visited, so old nodes “faded” while more actively visited
nodes remained clear. Article length could be encoded in the
radius of the node. The time a user spent on a given article
could be encoded on the node as well, perhaps in the radius
of a ring or halo around a node (to allow for both size and
time visited radius encodings). The distance of each node
from the origin node could be encoded using a simple color
ramp, creating a heatmap.
In addition to these more simple improvements, there are
complex new features that could be added to Wikitree. One is
relevancy analysis. Currently, each article is added naively,
and the only indication of connection is the links added by
the user’s own interactions. Relevancy analysis could be
conducted in many ways, such as the network structure of the
local area around the current articles, the text content of the
articles as measured against the Wikipedia corpus, or by
using patterns derived from the prior interactions of other
Wikitree users. These relevancy metrics could be used to add
features such as node suggestions or clustering in the map.

Nodes could be suggested to encourage discovery and
serendipity, enabling the user to discover new material (the
“suggest” of the research assistant). Nodes could be
recommended to either help the user tighten their coverage
within the local neighborhood they’re exploring, or nodes
could be suggested to break the user out into new, relevant
areas. Relevancy analysis could also allow for clustering or
coloring of nodes by shared categories or keywords. This
would give the spatial encodings of the graph more meaning
than simple physical distribution.
Another complex new feature could be article text
highlighting and annotation. This would undoubtedly be a
useful tool for researchers (a sentiment echoed by many users
during testing). However, there would be nontrivial difficulty
in creating and maintaining text selections for a living
document such as Wikipedia. Since Wikipedia articles could
be edited at any time, it may be difficult to track a highlighted
portion of text, as that portion undergoes changes (or even
complete deletion). Currently, Wikitree only caches
Wikipedia articles in memory, so refreshing a page fetches
the articles fresh from their API. This means that new edits
can be loaded instantly, but it also means that text must be
considered fluid and volatile. This would be an interesting
problem to consider, reaching into the world of git and
version control.
The Wikitree interface could also be applied to new frontiers.
At its core, Wikitree is a map and an article reader. This
concept could be applied to datasets other than Wikipedia.
For example, many users expressed a desire to use a
Wikitree-ish interface as a replacement for tabs. If the
interface could be installed as a browser plugin, it could track
a user’s entire navigation history and allow them to store
visited websites in a 2D network instead of the two sets of 1D
tabs and history we use currently. It has also been suggested
that Wikitree could be applied to academic papers, which
have their own rich network of interconnections via their
references. In a similar vein, it has been suggested lawyers
working case law could use a Wikitree-like interface to track
through precedence networks.
However grand or modest the scope becomes, we will
continue to iterate on Wikitree. We would like it to be stable
and useful enough to serve as an educational tool that could
find its way into classrooms and homes (and maybe even onto
Wikipedia itself).

ACKNOWLEDGMENTS
Wikitree was built with help from UW Informatics Capstone
teammates James K Prow and Christina K Xiao. We thank the
many users who have lent us their time for this project. We
thank the numerous advisors at UW who have contributed
their insights to this project, including Michael Freeman,
Jeffrey Heer, Jessica Hullman, David McDonald, Nam-ho
Park, Jason Porteno, David Stearns, and Jevin West. We thank
the Wikimedia foundation for their friendly API and
commitment to free and open knowledge for the world.

��� (remove for camera-ready copy)7

REFERENCES
1. Bostock, M. D3 Force Layout. https://github.com/

mbostock/d3/wiki/Force-Layout
2. Chau, D. H., Kittur, A., Hong, J. I., Faloutsos, C. Apolo:

Making Sense of Large Network Data by Combining Rich
User Interaction and Machine Learning. ACM CHI
Conference on Human Factors in Computing Systems.
(2011)

3. Infomap http://www.mapequation.org/index.html  

4. Kairam, S., Riche, N. H., Drucker S., Fernandez R., and
Heer J. Refinery: Visual Exploration of Large,
Heterogeneous Networks through Associative Browsing.
Eurographics Conference on Visualization. (2015)

5. Krempel, R. Local Wikipedia Map. http://lwmap.uni-
koeln.de/

6. Lancichinetti, A., Rosvall, M., Infobaleen Wikipedia Map.
http://www.infobaleen.com/wiki

7. MediaWiki API http://www.mediawiki.org/wiki/
API:Main_page  

��� (remove for camera-ready copy)8

