
Visualizing Vega’s Scenegraph and User Interaction

Jane Hoffswell
University of Washington

Seattle, Washington
jhoffs@cs.washington.edu

Figure 1: The modified Vega development environment including the (a) specification, (b) visualization, and (c) scenegraph
representation of an index chart. (d) The broken visualization for the index chart after user interaction and (e) the updated
scenegraph showing all nodes for the axis removed after expanding the scenegraph node. (f) Control buttons for updating the
scenegraph visualization.

ABSTRACT
Vega is a declarative visualization language that enables rapid
iteration while allowing designers to focus on visual encod-
ing instead of low-level implementation details. However, the
separation of specification from execution inhibits debugging
effectiveness due to obfuscation of the underlying code. Vi-
sualizing Vega’s scenegraph enables rapid exploration of the
visualization structure and underlying data. As end-users in-
teract with the visualization, the scenegraph updates dynam-
ically to show changes in the underlying data. Inspection of
the visualization enables users to identify related elements in
the scenegraph. Visually surfacing system internals enhances
user understanding and facilitates the identification of errors
that would otherwise require complex debugging cycles.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces

INTRODUCTION
Declarative languages accelerate the development process by
decoupling specification from execution, but this often comes
at the cost of effective debugging strategies since the un-
derlying execution is obfuscated [4]. Vega is a declarative
visualization grammar that builds on D3 with a high-level
JSON-based specification language. The simplified specifi-
cation enables rapid iterative exploration of the design space
and enables designers to focus on the visual encoding rather
than low-level implementation details. Declarative languages
promote code reuse since components of a specification can
easily be retargeted to incorporate new datasets or different
visual encodings. Vega has been extended to support declar-
ative design of end-user interactions and retargeting enables
reuse and modification of interaction techniques [7]. By sep-
arating specification from execution, language developers are
free to implement new optimizations without inhibiting the
designer’s process. However, this separation obfuscates the
underlying program state thus inhibiting the developer’s abil-
ity to evaluate and debug the output.



D3 partially addresses this issue by using a declarative frame-
work to map attributes to the document object model [1]. By
leveraging the browser’s native representation, D3 can sup-
port common web-based debugging strategies. Immediate
evaluation simplifies debugging by surfacing errors as they
occur instead of propagating them through a hidden control
flow. However, these forms of direct inspection can require
additional domain expertise. While Vega’s delayed evalua-
tion often complicates the debugging process, the advantages
of the simplified JSON representation outweigh this added
complexity.

To address Vega’s complicated debugging cycle, this work
shows how a visualization of the scenegraph can facilitate
exploration of the underlying data and identification of er-
rors. Dynamic updates to the scenegraph show how the data
changes based on end-user interactions. Inspection of the vi-
sualization helps users identify corresponding areas within
the scenegraph. This paper discusses an example use case
of the scenegraph for identifying an error in an implemented
Vega specification for an index chart. Interviews with real-
world developers help motivate design decisions and suggest
areas for future work.

RELATED WORK
As noted above, D3 attempts to address some of the tradeoffs
of declarative visualization languages by utilizing a declar-
ative framework within the document object model in order
to leverage the benefits of the browser’s native representa-
tion [1]. However, these advantages come at the cost of a
more complex representation that requires additional domain
expertise. Vega builds on D3 to provide a higher-level speci-
fication language, but in separating specification from execu-
tion adds a layer of obfuscation that limits debugging effec-
tiveness [8]. The separation of specification and execution is
a problem for other declarative languages beyond the field of
visualization, and Perfopticon starts to address this issue for
database queries [6].

Visual representations of program state can provide devel-
opers with relevant context to better understand and inter-
act with their code. Visualization of program behavior is a
common strategy in education for demonstrating how code is
executed. Automatic processes such as [3] step through pro-
gram execution and visualize how data is changing. However,
standard visualization techniques for visualizing program be-
havior often lack scalability to real world scenarios. Recent
work has addressed how to record and replay program execu-
tion in the browser for more effective debugging [2]. Other
visualization techniques target real world use cases but limit
the range of questions that a developer can answer about their
code [5].

METHODS
Vega is a declarative visualization language which separates
specification from execution, but limits debugging effective-
ness due to obfuscation of the underlying code. Vega parses
a JSON specification into a data flow graph representing the
execution pipeline. Data tuples are pushed through the data
flow graph to generate a scenegraph that is rendered into

Figure 2: The execution pipeline of Vega.

Figure 3: The execution pipeline of Vega according to exter-
nal users.

the final visualization (see Figure 2). The designer can use
the JavaScript console to access some information about the
underlying system, but such inspection requires knowledge
about Vega’s proprietary internal structure. For designers
without this expertise, the specification and visualization are
the only resources for debugging (see Figure 3). This project
introduces the scenegraph into the designer’s development
cycle to provide insight into the underlying structure and data
transformations.

Data Flow Graph
The data flow graph represents Vega’s internal execution
structure and is directly connected to the user-defined spec-
ification. Nodes in the graph correspond to different compo-
nents of the specification and are responsible for transforma-
tions to or propagation of data tuples. Though the data flow
graph was not used for this project, it is a relevant component
of future work.

Scenegraph
Vega constructs and updates the scenegraph based on user in-
teraction in the online editor. The visualization extracts the
scenegraph each time an update happens and processes the
difference by comparing the nodes with the previous data.
Calls to update are throttled until the user stops interacting
with the visualization in order to limit the number of neces-
sary computations. The difference calculation compares the
scenegraph from the start of the interaction with the scene-
graph representing the visualization in its final state. Once the
data has been extracted and updated, the scenegraph is drawn
using D3’s tree layout. Inspection of elements in the visual-
ization is handled using internal Vega functions for compar-
ing the bounds of scenegraph items with an input point.

RESULTS
In this section I outline the features of the scenegraph visual-
ization and briefly discuss areas of improvement and existing
limitations.



Scenegraph Tree Visualization
The scenegraph is a tree structure that describes how to ren-
der the output visualization. Prior to this work, users could
explore the scenegraph tree via a textual, nested representa-
tion in the console. However, the tree representation enables
more direct inspection into nodes of interest within the under-
lying structure.

Tree Interactions
The primary interaction on the tree is the ability to expand and
collapse nodes. When the scenegraph is first displayed, the
structure is simplified by collapsing all nodes where the num-
ber of children exceeds some predefined threshold (see Figure
1c). Future work should examine techniques to provide an
improved smart default representation. When a node is col-
lapsed in the tree, the stroke of the node is drawn in black and
the size of the node represents the number of hidden children
within the collapsed node. Buttons in the ”Scenegraph” bar
allow the user to more rapidly expand nodes and otherwise
simplify the display of the tree layout (see Figure 1f).

Data on Demand
Right clicking nodes in the scenegraph prints the node to the
JavaScript console and binds it to the variable global. This
form of interaction is the main entry point for accessing the
internal data for the scenegraph.

Figure 4: Between 20%-30% of nodes changed based on the
user selection of points.

Color Encoding
Completing end-user interactions on the visualizations or re-
parsing the specification updates the scenegraph to show how
data has changed. Nodes have four possible statuses after an
update (added, removed, modified, or none). The status of a
particular node is currently encoded by the stroke color of that
node. However, based on feedback from the poster session,
a symbol encoding may better represent this data and remove
confusion with the percentage color encoding described next;
For collapsed nodes in the scenegraph, the fill color of the

node represents the percentage of descendants that have been
updated in some way (see Figure 4).

Figure 5: Selecting the ”70” text label on the visualization
highlights the corresponding components of the visualization.

Inspection
Changing to the ”Inspect” mode allows users to select ele-
ments in the visualization and see corresponding components
in the scenegraph (see Figure 5). This form of inspection uses
the bounds of the scenegraph nodes to determine if the point
of interest is contained within the element. Vega’s pick
function did not seem to select components beyond visual
marks (i.e. it did not identify axis elements) and only iden-
tified a single node, not the entire path. Currently, this form
of inspection does not always work as expected and there-
fore requires additional modification to resolve bugs as future
work.

DISCUSSION
Before implementing the scenegraph visualization I con-
ducted interviews with external Vega users to gain a better
understanding of the problems faced by current users. Based
on the results of these interviews, I implemented the scene-
graph and interaction techniques described above. Finally, I
used the scenegraph to explore an actual error in a Vega spec-
ification in order to discuss the advantages and limitations of
this visualization.

User Interviews
Prior to the start of this project, I conducted interviews with
external Vega users to identify common debugging strate-
gies and areas of the development cycle that would bene-
fit from improvement. Vega’s JSON representation facilitates
programmatic generation so we hypothesized that most spec-
ifications would be programmatically generated rather than
written by hand. In interviewing Vega users, I observed that
many users do in fact generate specifications within their ex-
ternal system. However, when a specification has an error
beyond a simple syntax error, the user often switches to the



online editor to manually debug the result. There are two
debugging strategies that are employed at this point: itera-
tion and inspection. The scenegraph visualization presented
in this paper augments both types of debugging strategies.

For the iterative debugging strategy the user manually up-
dates the specification and parses it to examine changes in
the result. This strategy can result in a simplified specification
where the user iterates to find the smallest specification that
produces the error. This strategy requires a significant amount
of manipulation of the specification by hand, which can be a
tedious process for complicated visualizations. To better sup-
port iterative debugging, the scenegraph tracks changes when
the user re-parses a specification. Updates are shown in the
scenegraph and thus allows the user to quickly identify the
impact of a change.

In the inspection debugging technique, the user accesses the
underlying representation via the JavaScript console. In some
cases, the JavaScript console will contain an error that pro-
vides insight into the source of the bug. Otherwise, users will
use the console to explore the scenegraph or data flow graph.
However, most users noted that they did not take much ad-
vantage of this information in the debugging cycle. Though
inspection is a common debugging strategy for the developers
of Vega, the required domain expertise makes it hard for ex-
ternal users to utilize this information. However, by visually
representing the scenegraph, Vega users can more rapidly ac-
cess information that was otherwise hidden in the proprietary
internal format.

In these interviews I also elicited feedback on possible im-
provements to the overall development process. The two most
largely requested features were brushing & linking between
specification, visualization, and underlying execution struc-
tures and a representation of how data changes over time. The
scenegraph attempts to address these concerns by enabling
linking between the scenegraph and visualization and by en-
abling inspection of the underlying data through nodes in the
scenegraph.

Example Use Case
To demonstrate the advantages of the visual scenegraph rep-
resentation, I used it to help diagnose an actual error in a Vega
specification for an index chart. An early iteration of Vega’s
index chart contained a bug that caused the visualization to
improperly display the lines (see Figure 1d). Prior to diagnos-
ing this error, we identified the following lines as the potential
source of the bug:
{ "name": "index",
"source": "stocks",
"transform": [{
"type": "filter",
"test": "d.date + 1296000000 >= indexDate &&

d.date - 1296000000 <= indexDate"
}]

}

Making this hypothesis required close inspection of the spec-
ification and sufficient familiarity with the example to un-
derstand the intended behavior of this code. Our hypothesis
was that this calculation was not correctly binning the data

since the hard coded date offset (1296000000) would not
work correctly for certain months. We hypothesized that us-
ing Vega functions such as month would help to resolve the
problems with this binning calculation.

To test this hypothesis, I used the scenegraph to explore
changes in the data while interacting with the index chart.
I started by finding a point where the visualization stopped
behaving correctly, as in Figure 1d. It is evident from both
the visualization and scenegraph that all the lines still exist
in the visualization at this point, though we can observe that
all the axis marks have in fact been removed (see Figure 1d,
e). I then selected the index point text mark and determined
the date of this point: Wed Jan 16 2002. I compared
the index point to the difference calculation to observe that
the bounds where indexDate was the center would extend
from the 1st to the 31st for this point. Thus, the hard cod-
ing appears to be creating a buffer of two weeks on either side
of the input date.

To put this date in context, I identified additional points in
the visualization where the data was incorrect and compared
the index date at those points. In making this comparison, I
noticed that many of the dates that caused the visualization to
break were the 16th.

Figure 6: (a) Data printed to the console from nodes in the
scenegraph. (b) Data from the same node at the broken index
point.

At this point, I expanded one of the lines and started inspect-
ing the data of the points. By comparing the internal data
with the data at points where the visualization was working
correctly, I noticed that the data of the lines was not being cor-
rectly set beyond the default (see Figure 6). This observation
suggested that there was an error in how the index term
was calculated, which is related to the specification code
identified above.

In examining the input data file, I noticed that every data point
was for the first of the month, so this calculation should be
binning the data by month. At this point, I tested the follow-
ing update to the specification using Vega’s month function:
{ "name": "index",

"source": "stocks",
"transform": [{
"type": "filter",
"test": "month(d.date) == month(indexDate) &&

year(d.date) == year(indexDate)"
}]

}

This update to the specification removed the error. However,
I still wanted to get a firm diagnosis as to why the previous
specification was broken. Returning the specification to the



previous state, I identified the point before the broken index
date. I selected the first node of the first line and grabbed the
index date for that point: Tue Jan 01 2002 00:00:00
GMT-0800 (PST). Next, I computed the range of values
using the original formula and compared them to the broken
index point:
date = Tue Jan 01 2002 00:00:00 GMT-0800 (PST)
high = Wed Jan 16 2002 00:00:00 GMT-0800 (PST)
low = Mon Dec 17 2001 00:00:00 GMT-0800 (PST)
indexPoint = Wed Jan 16 2002 08:42:42 GMT-0800 (PST)

In comparing these points, we actually see that the index point
does not fall within the bounds as expected since the time
of the indexPoint throws off the calculation that should
otherwise be based on month and year.

This example shows that the main advantage of the scene-
graph is that it provides an entry point for the underlying data.
Though we were able to identify the source of the error prior
to debugging it with the scenegraph visualization, accessing
the data was useful for diagnosing why the specification was
incorrect. We can hypothesize that the process mentioned
above would have facilitated identification of the error had
we not already identified a potential source. However, future
work is required to sufficiently test the effectiveness of this
debugging strategy by external Vega users.

FUTURE WORK
The interviews with external Vega users identified two ar-
eas that would benefit from future work: brushing & linking
and representations of data changes. Interviewees noted that
brushing and linking specification, visualization, and visual
representations would be beneficial as it would shrink the gap
between components thus enabling more rapid exploration
and manipulation of the specification. The inspection mode
of the visualization starts to implement this idea, but many
individuals at the poster session and through interviews have
noted that linking to the specification would be even more
beneficial for implementing changes. This form of linking
would have been particularly useful for the use case explored
above because it could have directly shown the connection
between the data in Figure 6 and the part of the specification
responsible for calculating the index term.

The most requested feature during the interviews was the abil-
ity to observe changes to the underlying data. This request
was supported by the use case above in which we observed
that the data was the most relevant component for debugging
the visualization. While the scenegraph acts as an entry point
to the underlying data, future work should explore more direct
ways to present this information. The internal data comes in
multiple forms (data driving the visualization and data repre-
senting the visualization), and the data is transformed by the
data flow graph and through end-user interaction. Both types
of data are potentially relevant for debugging broken visual-
izations, so it will be necessary to design a representation that
can display changes to both types of data.

The data flow graph may provide insight into how best to link
the specification to the visualization. Furthermore, the data
flow graph may provide an entry point for examining how

data transformations update the data. However, future work
is required to identify how best to utilize the data flow graph
in the development process. Finally, additional user studies
need to be conducted to determine the effectiveness of these
debugging strategies in real world development processes.

CONCLUSION
While Vega is useful because it enable rapid iteration and al-
lows designers to focus on visual encoding over implementa-
tion, it obfuscate the underlying execution thus limiting de-
bugging effectiveness. Visualizing Vega’s underlying scene-
graph provides users with an entry point for exploring internal
data and making relevant connections between components of
the execution process. Interacting with a dynamic scenegraph
can provide useful insights into how data is manipulated, thus
allowing users to more easily diagnose errors in their specifi-
cation.

ACKNOWLEDGMENTS
The author thanks Jeffrey Heer, Dominik Moritz, Jeff Snyder,
Arvind Satyanarayan, and the students of CSE512 for their
feedback and support of this project. The author also thanks
the interviewees for their insights on the Vega development
process.

REFERENCES
1. Bostock, M., Ogievetsky, V., and Heer, J. D3: Data-driven

documents. IEEE Trans. Visualization & Comp. Graphics
(Proc. InfoVis) (2011).

2. Burg, B., Bailey, R., Ko, A. J., and Ernst, M. D.
Interactive record/replay for web application debugging.
In Proceedings of the 26th ACM Symposium on User
Interface Software and Technology (St. Andrews, UK,
October 8–11, 2013), 473–484.

3. Guo, P. J. Online Python Tutor: Embeddable web-based
program visualization for CS education. In Proceedings
of the 44th ACM Technical Symposium on Computer
Science Education, SIGCSE ’13, ACM (New York, NY,
USA, 2013), 579–584.

4. Heer, J., and Bostock, M. Declarative language design for
interactive visualization. IEEE Trans. Visualization &
Comp. Graphics (Proc. InfoVis) (2010).

5. Lieber, T., Brandt, J. R., and Miller, R. C. Addressing
misconceptions about code with always-on programming
visualizations. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’14, ACM
(New York, NY, USA, 2014), 2481–2490.

6. Moritz, D., Halperin, D., Howe, B., and Heer, J.
Perfopticon: Visual query analysis for distributed
databases. Computer Graphics Forum (Proc. EuroVis) 34,
3 (2015).

7. Satyanarayan, A., Wongsuphasawat, K., and Heer, J.
Declarative interaction design for data visualization. In
ACM User Interface Software & Technology (UIST)
(2014).

8. Vega: A Visualization Grammar.
http://trifacta.github.io/vega, April 2014.

http://trifacta.github.io/vega

	Introduction
	Related Work
	Methods
	Data Flow Graph
	Scenegraph

	Results
	Scenegraph Tree Visualization
	Tree Interactions
	Data on Demand
	Color Encoding
	Inspection

	Discussion
	User Interviews
	Example Use Case

	Future Work
	Conclusion
	Acknowledgments
	REFERENCES 

