
A Visualization Tool for Human-in-the-loop Machine
Learning

Marco Tulio Ribeiro
Computer Science and Engineering

University of Washington
marcotcr@cs.washington.edu

Brian Dolhansky
Computer Science and Engineering

University of Washington
bdol@cs.washington.edu

INTRODUCTION
As the amount of data produced by the worlds population
increases year by year, the need for efficient ways to pro-
cess and learn from that data arises. The field of machine
learning, a marriage of statistics and computer science, is
one attempt at distilling large amounts of data into a usable
format. However, many machine learning models are diffi-
cult to interpret, or they learn something different from the
true desire of their designers.

Our project brings a human into the learning loop (see Fig-
ure 1) so that more accurate models can be produced. The
idea is that we would start with a trained machine learning
model (train and model boxes). The system (or the user)
would then pick a set of examples and/or summary statis-
tics to look at (pick box), which are then explained to the
user in some way (explain box). Having understood what the
model’s strengths and weaknesses, the user is in a position
of providing some sort of feedback (feedback box), which
could be in the form of labeling more examples, adding or re-
moving features, changing models, etc. The loop then starts
again. This formulation of the problem encompasses tech-
niques like active learning (amongst many others), where
pick is the most important step, and feedback involves la-
beling examples, while explain is ignored.

Model

Pick Explain

User

FeedbackTrain

Figure 1: Machine learning loop

The critical part in the loop where visualization comes is the
explain box. This involves giving an overview of what the
models are learning, as well as explaining individual predic-
tions. This is the primary focus of this work - along with
a simple mechanism for feedback, which is required if we
are to have a full loop. We focus primarily on text data, and
on the multi-class classification task. For simplicity, we as-
sume that the bag-of-words representation is used, although
we plan on relaxing this assumption in future work, as our
visualizations generally do not depend on it.

Our tool has three top “views”, which share a common visu-
alization underneath that allows the users to interact with the
dataset. The first view is meant to explain individual predic-
tions to users, in terms of feature contributions. The second
view gives the users a global “summary” of the model, in
the form of summary statistics and an interactive confusion
matrix. Finally, the third view allows the user to give feed-
back to the model. The kind of feedback we allow currently
concerns mainly data cleaning - which we argue is already
important enough to significantly improve most text classi-
fiers.

LITERATURE REVIEW
The statement that understanding what machine learning mod-
els are really learning leads to better models is not very con-
troversial. Patel et al [4] conducted interviews with machine
learning / HCI practitioners, and found a consensus regard-
ing the following: (1) the machine learning process is itera-
tive and exploratory, (2) understanding data and algorithms
is really important, and (3) evaluation is hard and critical.
They do a study where they observe people trying to pro-
duce a digit classifier, where they found that a lot of time
people get stuck in part of the process (e.g. model selec-
tion) when the problem is somewhere else (such as lack of
labeled data, or noise in the data). They also found that just
looking at summary statistics in cross validation (CV) data
is not enough for evaluation - all of the participants overes-
timated their models accuracy, when compared to a hidden
test set, due to CV quirks. This led the authors to produce
Gestalt [3], a system aimed at software developers that ex-
poses the Machine Learning pipeline in steps. One can see a
particular example all the way through the pipeline, imple-
ment his own visualization, click on a confusion table to see
misclassified examples and click on an example and see the
features or the raw data. Unfortunately, no explanation of
how the model is interacting with the data is provided to the
user, so it may be hard to determine what to do to improve
the model.

On a similar line of research, [1] provides a visualization
where examples are sorted according to the model’s predic-
tion, and colored by their true class (which was the inspi-
ration for our databin visualization). You can click on an
example to see the raw data. Any interaction (adding fea-
tures, relabeling examples, etc) which makes an example
move produces an arrow from the previous position to the
next position. Their visualizations are helpful, but there is
no support for multi-class classification, or explanation of

1

why the model is making predictions the way it is. Also, the
visualization does not scale to larger datasets, as there is not
enough space in the screen for all of the points.

Some research has been done on explaining individual pre-
dictions, or giving an overall explanation for the model. In
[5], the authors “distill” a matrix factorization model into
rules (trying to be faithful to the original model, while be-
ing more interpretable). It is unclear as to how helpful these
are, as there is still a problem of selecting which rules to
show to the user. In [6], the authors focus on explaining
individual classifications by highlighting individual feature
contributions, taking into account the interactions between
features. Contrary to the name, their method is not efficient
at all, as it takes over an hour to generate an explanation for
an individual prediction in a dataset with 279 features (which
is very modest for today’s standards), so it could not be used
for interactive visualization.

More in line with our vision of machine learning as a loop,
[7] did an experiment where the system explained itself to
the user by showing rules, Naı̈ve Bayes “weights” or simi-
lar examples to the one being classified. The users then pro-
vided free form feedback (on paper), which they later tried to
incorporate retroactively. Both their explanations and some
of their feedback are model-dependent, working only with
Naı̈ve Bayes. In fact, in follow up work [2] they develop an
interactive system focused only on Naı̈ve Bayes, where the
explanation is guided by user questions, such as “why is this
example classified positive”. One drawback of their system
is that feedback is very limited (just relabeling documents),
and it’s not clear how useful it is - in fact it seems that it
usually harms the system’s performance. It is also not very
interactive, which is a feature that most participants in their
study really wanted - being able to change something and
seeing the results right away.

Our main contributions are combining all of the following in
one system: (1) treating the process as a loop and allowing
for feedback, (2) explaining individual predictions - visually
and interactively, (3) allowing for multiclass classification,
(4) interactivity in both the individual prediction explana-
tions and “global” model explanations, (5) handling larger
datasets (to a certain extent), and (6) being model-agnostic -
i.e. working with any machine learning classification model.

THE BACKEND, FEATURE IMPORTANCE
We wrote the backend of our visualization in python, on top
of scikit-learn1. We used different text dataset corpora, but
in this report we will restrict our examples to subsets of the
20 newsgroups dataset2. This is a widely used dataset in the
literature, and it consists of distinguishing between emails
sent to different newsgroups. In this report, we either use a
2-class subset which tries to distinguish between Christianity
and Atheism newsgroups, or a 3-class subset which tries to
distinguish between “windows-misc”, “ibm-hardware” and
“windows-x”. As a classification algorithm, all of our ex-
amples use L2 regularized logistic regression, although any
1http://scikit-learn.org/
2http://qwone.com/ jason/20Newsgroups/

classification algorithms that produces class prediction prob-
abilities can be used in our tool.

In order to assess the importance of a feature (in our case,
word) to a prediction, we follow a greedy procedure. We
assume our classifier can return P (Y = y|x) for any x, and
that the classifier predicts the example as y (i.e. pred(x) =
y). If the example being explained is x, we start with x′ = x
and define x′−w as a copy of x′ without feature w. We follow
the procedure outlined in Algorithm 1, which removes words
from x until the class changes. The importance of a word is
then defined as how much it influences the prediction if it is
re-added to x afterwards.

let x′ = x;
let words = list();
while pred(x′) = y and x′ is not empty do

w′ = argmaxw P (Y = y|x′)− P (Y = y|x′−w);
append w′ to words;
if pred(x′) 6= y then

Append to words every word w′ such that
pred(x′−w′) 6= y and remove every such w′ from
x′;

end
x′ = x′−w′ ;

end
foreach w ∈ words do

Importance(w) = p(Y = y|x′−w)− p(Y = y|x′);
end

Algorithm 1: Explain prediction y for example x

Although it is greedy and approximate, this algorithm has
the following advantages: (1) it is relatively fast, assuming
fast predictions are available (which is usually the case), (2)
it is general, so that any classifier that outputs a prediction
probability can be explained, and (3) the explanation has an
easy interpretation: if all of the words that are explained as
important were removed, the prediction changes.

THE DATABIN
The main tool we use for visualizing a dataset as a whole is
the databin (see Figure 2). With this visualization, the user
is given an overview of how the model classifies each docu-
ment. In addition, the databin is interactive, and allows users
to examine certain documents by clicking on them, or see-
ing more information about an example by hovering over it.
With the encodings we’ve chosen, it is immediately evident
what documents the model may be overfitting on, thereby
speeding up the Explain and Feedback steps.

This visualization is similar to and inspired by [1], but with
several notable changes. A major limitation of Modeltracker
is that it cannot handle more than two classes, but most non-
trivial machine learning classification problems consist of
multiple classes. Hence, we’ve used different encodings and
interactions in order to represent the performance on multi-
ple classes in a two-dimensional space. In addition, in con-
trast to the positional encodings used by Modeltracker and
our initial databin mode (likelihood binning), we’ve added
an additional mode (which we call class binning). In this

2

(a) Likelihood binning

(b) Class binning

Figure 2: Two databin modes

mode, examples can be binned by class instead of their model
likelihood.

Likelihood binning In this mode, each example xi is rep-
resented with a single square whose color is determined by
the true class of the example yi We encode the likelihood
p(Y = y | xi) of an example xi belonging to a particular
class y with the horizontal bin of the square. The class y can
be changed by clicking on the corresponding legend entry,
and any changes are animated. We use the vertical position
to encode whether or not an example was classified correctly.
All examples whose true class yi equals the model’s predic-
tion y are binned above the horizontal line, and vice versa
for mistakes. This makes it very simple to see which ex-
amples the model has classified incorrectly. For instance,
the model is very confident on examples at either extreme
of the horizontal. If there exist some examples below the
horizontal line at these extremes, then the model has made a
very confident mistake, which is usually indicitive of some
underlying problem that needs to be rectified by a user.

Class binning We can use an alternative horizontal encod-
ing to see the performance on all classes in parallel. Instead
of using the likelihood to encode which bin an example, we
simply bin each class separately. We still use the same ver-
tical and color encodings. In this mode, it is simple to see if
a model is underperforming on one class in particular.

One criticism that could be construed against the databin is
that it is limited to small datasets. In order to minimize this
problem, we make the bin sizes adaptative to the number
of documents that would fall in each bin - i.e. if there are
enough documents in a bin to violate the vertical boundaries,

Figure 3: The “Explain prediction” window.

we use less bins. If that is not enough, we reduce the size of
the squares encoding the documents. While these measures
still donot allow for huge datasets, it makes the visualization
more flexible to medium-sized datasets.

EXPLAINING INDIVIDUAL PREDICTIONS
It is helpful to look at specific examples to get a finer-grained
idea of what the model is learning. One particularly helpful
method is to select items from the databin that have very high
or very low likelihood but are classified incorrectly. These
documents can be selected, and they are displayed in the up-
per portion of our visualization. An example of this portion
of our visualization is given in Figure 3.

The text is interactive; that is, a user can edit the text in
the left window and apply it. The document will then be
(non-destructively) reclassified, and the prediction probabil-
ities on the right are animated to show changes. This tech-
nique can be used to determine the effectiveness of specific
changes, like removing certain features. In addition, the user
can hover over a specific feature to see the distribution of that
feature throughout the training set. This is illustrated in Fig-
ure 4. A user can “brush” certain features in this window by
clicking on them. One or more features can be selected, and
the examples that contain these features are “brushed” in the
databin as in Figures 5 and 6.

The importance of the features are encoded with color and
size so that they can quickly be discerned from the docu-
ment. Intuitively, if all of the colored words were removed
from the example, the example’s classification would change.

An example of the usefulness of this type of inspection is
given in Figure 4. The irrelevant feature “mit” is given high
weight simply because it appears mostly within the “windows-
x” class. In addition, other irrelevant features like email
header keywords are marked as important. The user could
then use this information to apply specific feedback to the
model.

GLOBAL STATISTICS
If the user wants a more quantitative view of the model per-
formance, they can select the “Global Statistics” tab, which
includes standard metrics such as accuracy and the label dis-
tributions. In addition, an interactive confusion matrix is in-
cluded. We note here that we got the confusion matrix de-
sign from one of the TAs. The user can select one of the cells
in the matrix, and the corresponding entries are brushed in
the databin (see Figure 5). This aids the user in determining
why a certain class of mistakes is made, by examining the
examples in that class. For instance, a user may want to fig-
ure out if there is a common pattern in the “windows-misc”

3

(a) Feature hover

(b) Feature importance

Figure 4: The statistics that are shown when a user hovers
over a feature (a) and the overall importance of features in
the example (b). Note that this particular example reveals an
issue with the model - the irrelevant feature “mit” appears
mostly in the “windows-x” group, but it is not relevant to
distinguishing between Windows and IBM hardware.

(a) Cells in the confusion matrix are interactive

(b) When a cell is clicked, the corresponding examples are brushed

Figure 5: The global statistics visualization.

Figure 6: Data cleaning feedback.

class that the model classifies as ibm-hardware. Doing so
yields the quick observation that the model is not robust to
the presence of “hardware” words in other classes, such as
“disk”, “backup”, or even “computer”. We know that such
words would be expected in “windows-misc”, as windows
runs on hardware. This king of insight allows us to deter-
mine what the next steps should be when trying to improve
our classifier.

FEEDBACK
In order to close the loop, the user must be able to provide
some feedback to the sytem. In this work, we let the user per-
form basic data cleaning, in the form of search and replace
regular expressions. As shown in Figure 6, we highlight the
parts of each document that match the search regular expres-
sion, in order to help the user come up with the correct ex-
pression. We also “brush” the examples in the databin that
match it, so that the user can gauge the impact of the feed-
back before applying it. When a set of regular expressions
is applied, it modifies every example it matches on the train-
ing and validation sets, and the classifier is retrained on the
backend. Even this simple form of feedback already has a
tremendous impact - one is able to remove very common
words, remove parts of the document that may lead to over-
fitting (e.g. headers in the 20 newsgroups dataset), and etc.

CONCLUSIONS / FUTURE WORK
In this work, we propose and implement a tool that enables
human-in-the-loop machine learning. We primarily focused
on the “explain” aspect, which allows the practitioner to un-
derstand what kind of concepts the system is learning, and
why. We also provide a simple form of feedback, which
allows for data cleaning. Since our tool has a lot of fea-
tures, we built a tutorial using Trip.js3, which guides you
through each of the features interactively. We received a
lot of positive feedback when presenting the poster for this
work. Some notable comments were to the effect of “this is
great - I took a machine learning course last quarter and it
really bothered me that I didn’t know what it was learning,
or how to improve it”, or “are you guys thinking of turning
this into a startup?”.

As for future work, an obvious next step is doing a user
3http://eragonj.github.io/Trip.js/

4

study to validate the usefulness of our tool. We claim that
our system allows users to come up with models that gen-
eralize better, so a study where models are evaluated on a
held out dataset that was collected in a different manner
than the training and validation datasets seems like the right
approach. Another line of work would be overcoming the
databin size limitation, by aggregating nearby points into
“clusters”, which could then be expanded by hovering or
clicking. More work on the feedback side of the picture
would greatly improve the usefulness of the tool. One can
imagine the full range of feature engineering being done in
the tool - and maybe even model and hyperparameter selec-
tion. Someone in the poster session suggested that we allow
for explanations of classes other than the predicted one - so
that one could know how to “force” the model to predict the
right class, and not only to stop predicting the wrong one. Fi-
nally, one last line of work would be to expand this to other
kinds of data, such as images and tabular data, which are
widely used in the scientific community.

REFERENCES
1. S. Amershi, M. Chickering, S. M. Drucker, B. Lee,

P. Simard, and J. Suh. Modeltracker: Redesigning
performance analysis tools for machine learning. April
2015.

2. T. Kulesza, S. Stumpf, W.-K. Wong, M. M. Burnett,
S. Perona, A. Ko, and I. Oberst. Why-oriented end-user
debugging of naive bayes text classification. ACM Trans.
Interact. Intell. Syst., 1(1):2:1–2:31, Oct. 2011.

3. K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J.
Ko, and J. Landay. Gestalt: Integrated support for
implementation and analysis in machine learning. In
Proceedings of the 23Nd Annual ACM Symposium on
User Interface Software and Technology, UIST ’10,
pages 37–46, New York, NY, USA, 2010. ACM.

4. K. Patel, J. Fogarty, J. A. Landay, and B. Harrison.
Investigating statistical machine learning as a tool for
software development. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’08, pages 667–676, New York, NY, USA, 2008.
ACM.

5. I. Sanchez, T. Rocktaschel, S. Riedel, and S. Singh.
Towards extracting faithful and descriptive
representations of latent variable models. In AAAI Spring
Syposium on Knowledge Representation and Reasoning
(KRR): Integrating Symbolic and Neural Approaches,
2015.

6. E. Strumbelj and I. Kononenko. An efficient explanation
of individual classifications using game theory. J. Mach.
Learn. Res., 11:1–18, Mar. 2010.

7. S. Stumpf, V. Rajaram, L. Li, W.-K. Wong, M. Burnett,
T. Dietterich, E. Sullivan, and J. Herlocker. Interacting
meaningfully with machine learning systems: Three
experiments. Int. J. Hum.-Comput. Stud., 67(8):639–662,
Aug. 2009.

5

	Introduction
	Literature Review
	The Backend, Feature Importance
	The Databin
	Explaining individual predictions
	Global statistics
	Feedback
	Conclusions / Future work
	REFERENCES

