
Better Tools for Fault Diagnosis in Complex Systems

Nathaniel Guy and Nick Reiter

Abstract— Determining the root causes of problems for com-
plex electromechanical systems is difficult. Systems can detect
fault states quite reliably using simulated software models;
however, even when a fault is detected, it can be difficult
to determine the underlying reasons, and resolution method,
for that fault. Some anticipated faults may be automatically
recovered from, but others are more complex and require
humans to understand their root causes before resolving them.

In this paper, we discuss the work that we’ve done to address
these issues within a data visualization product. We discuss the
major frontend components, as well as our highly modularized
backend, which we developed in order to make a system that
not only simplifies the telemetry monitoring and fault diagnosis
tasks, but does it in a way that’s extensible to a wide variety
of systems.

I. INTRODUCTION

The fault diagnosis process is very difficult, and can take
weeks to months. It involves intense scrutiny of potentially
thousands of data channels, and often the only comprehen-
sive understanding of how these data channels relate to each
other is encoded in human tribal knowledge. For this reason,
a large amount of domain expertise is required to even begin
this process.

Because diagnosing the root cause of system faults can
take thousands of man-hours of expert time, any tools that
can facilitate the navigation and organization of this task
can potentially save a lot of money and time. However,
visualizations designed for telemetry monitoring and fault
diagnosis encounter the following major issues:

• Displaying data from thousands of different channels
isn’t practical

• It is unclear how best to organize thousands of different
interrelated channels to make interesting ones findable

• We would like to have automatic discovery and visual-
ization of relationships between channels

• The tools ought to be able show many views of data in
a coherent interface

Modern research has made some headway on these issues,
and we have attempted to incorporate some of their findings
within our project. Much of our organization and choice
of components was influenced by personal experience with
telemetry monitoring and analysis software used within the
space industry, and the issues that we experienced first-hand
when dealing with the problem of fault diagnosis across huge
datasets.

Nathaniel Guy and Nick Reiter are both Masters students in the Uni-
versity of Washington Department of Computer Science and Engineer-
ing, and can be reached at natguy@cs.washington.edu and
nreiter@cs.washington.edu, respectively.

II. RELATED WORK

There is a rich body of literature related to telemetry
visualization techniques and fault diagnosis. We borrowed in-
sight and several visualization techniques from the literature.
Cancro et al. developed useful techniques for packing large
numbers of channels into a dense rectangular space [1], and
Yairi et al. demonstrated ways to show change correlation
between data channels [3], which were inspirations for our
Global Correlation Matrix and Channel Correlation Vector.
Simple fault detection methodology was adapted from Will-
sky [2].

III. COMPONENT ARCHITECTURE

We incorporated many different ideas from the fields
of data visualization, and examined historical tools and
theories for ideas. In this section, we give descriptions and
justifications of components we implemented.

A. Fault Monitoring Window

Borrowing from traditional monitoring interfaces, this part
of the visualization has a traditional live data display panel,
including the current system time and values of specified
telemetry channels. Which channels’ values are shown is
configurable.

This window also carries a description of any recent faults,
along with details of the rules that originally caused them
to trigger, and any other additional fault-related notes that
system designers or operators have included for reference.
This additional information, uncommon in traditional fault
monitoring system, accelerates the fault diagnosis problem
by immediately pointing towards possible root causes. Fi-
nally, an LED-shaped icon shows the current fault state, in
order to quickly grab the attention of the operator. This
section is designed to allow quick and easy viewing of
critical and important information. See Figures 1 and 2.

Fig. 1. An example of the default Fault Monitoring Window state.



Fig. 2. An example of the faulted state of the Fault Monitoring Window.

B. Channel Hierarchy Window

A degree-of-interest tree displays the hierarchy of all of
the data channels. Major systems are broken into subsystems,
which are then again broken into smaller subsystems, until
the channels are reached at the leaf nodes. Clicking allows
for expansion and navigation of the tree, and allows channel
data to be selectively added to the Plotting Window. When
a fault occurs, any related nodes on the tree are flagged,
and those flags are propagated upwards to allow an operator
to trace through the tree to find the channels affected by
faults. Simple JSON configuration controls the organization,
allowing for easy creation and customization for individual
requirements. See Figure 3.

Fig. 3. Several examples of detail plots for various channels.

C. Plotting Window

This component provides a set of configurable plots of
live or time-relevant telemetry channel data. The plots update
as new data comes in over the network. This component is
tightly linked to the Channel Hierarchy Window, which pro-
vides an interface for adding new channels to be displayed.
When a fault occurs, the channels determined to be most
relevant to that fault are shown. Even in a fail-safe mode

where no new telemetry is being received, the plot display
allows a human operator to review data leading up to the
fault. See Figure 4.

D. Global Correlation Matrix

This 2D matrix shows Pearson Correlation Coefficients
across many different data channels, based on the most recent
telemetry channel values. These cross-correlations are visu-
alized using hue to show positive/negative correlation, and
intensity to show the strength of that correlation. With this
widget, an operator can see changing channel correlations,
which may suggest possible interconnectedness or causation,
based on more than physical or system connections. See
Figure 5.

Fig. 5. An example of the Correlation Matrix display.

E. Channel Correlation Vector

This component is similar to the Global Correlation Ma-
trix, but shows channel correlations for a specific channel un-
der review. Here, with the focus on an individual channel, we
sort based on the magnitude of the correlation, and display
the top related channels. The names of correlated channels
are displayed for quick reference and faster lookup than the
Global Correlation Matrix could provide. See Figure 6.

F. Additional Features

We implemented a number of additional changes to the
application that differentiate it from traditional telemetry
monitoring interfaces and improve its applicability to a wide
variety of systems and problems:



Fig. 4. The Channel Hierarchy Window expanded to show several subsystems, highlighting a fault in the Accelerometer subsystem.

Fig. 6. An example of the Correlation Vector, focused on the Z Acceleration
channel.

1) JSON Configuration: The application reads in compo-
nent configuration from JSON files, including for the channel
hierarchy, and the alarm system. This allows simple cus-
tomization based on individual requirements. In particular,
this provides a paradigm which makes modular development
possible, where separate groups build up configuration for
the components under their control. To generate the system
config, these channel hierarchies can simply be collated,
and the alarms collected. Additionally, the format is easily
human-readable and editable.

2) Automatic Fault Detection: Organization using simi-
lar telemetry systems often have a set of fault detections
rules, built up from experience and an understanding of
the component engineering. The configuration mentioned
above allows easy integration of these rules, both simple
and complex, through embedded Python snippets (a simple
and widely-known language in scientific communities). Our

application then automatically monitors the state of these
alarms, integrating them with our correlation layer, to better
enable detection and diagnosis of faults.

3) Client-Server Design: Our architecture allows for mul-
tiple simultaneous clients. This enables the system to be
centralized, with dedicated resources, while still allowing
multiple users. With the modular design, as well as the
customizability of the JSON configuration, our system allows
these clients to synchronize, to explore independently, or
even to analyze completely different data sets, all from the
same deployment.

4) Telemetry Simulation: For testing purposes, we devel-
oped a system to generate sample telemetry data. Also using
customizable JSON configuration, the simulator creates data
for channels based on means and standard deviations.

5) Support for Different Data Sources: When architecting
our application, we focused heavily on modular design. Not
only does this allow components to easily be maintained,
understood, and even utilized separately, this has the benefit
of allowing easy customization for getting data from different
sources. The client visualization simply requests data from
the server, which may obtain it from different sources, even
simultaneously. The basic demo application reads from JSON
files of simulated data for example, but the server can also
easily support reading from serial input, listening over the
network, and essentially any alternate source or format.

IV. RESULTS
Our visualization has yet to undergo an extensive user

study, but we performed multiple demonstrations and so-
licited user feedback at a poster session on 6/8/2015. Feed-
back was generally very enthusiastic. The Channel Hierarchy
Window and the Global Correlation Matrix were the subjects



of the most attention, perhaps due to their novelty and effec-
tiveness. However, we also received feedback stating that we
should develop a more compelling demonstration of a fault
diagnosis exercise, utilizing the correlative features of the
interface. In the future, we anticipate designing challenges
for test users that involve troubleshooting a deliberately
engineered issue to try to find a hidden root cause of which
we (the developers) are aware.

V. FUTURE WORK

Due to the time constraints inherent in the project, we
focused our efforts on the basic visualizations, and proving
their feasibility. Our work shows the viability of assisted fault
diagnosis, but several aspects remain open for exploration. In
particular, the issue of scaling remains largely unaddressed.
With the channel hierarchy, the degree-of-interest tree will
allow robust scaling and exploration, given enough space.
The detail chart system and monitoring panel will similarly
scale, given space. However, the correlation matrix will
run into computational and spatial problems. Displaying a
10,000x10,000 matrix is unfeasible, and unlikely to assist
users. A number of potential solutions exist for exploration.
First, we could simply do correlation matrices on a sub-
system level. This would likely capture much of the mean-
ingful correlation, but would ignore intersystem connections.
Alternately, we could do some form of clustering, using
the correlation scores as feature vectors. Tuning clustering
to maximize the meaningful intracluster correlation would
allow us to display correlation matrices for each cluster, and
capture the relevant connections.

Another area that we did not have time to explore deeply
involves other methods for facilitating data exploration. For
one example, we intend to adjust the interface to allow the
user to scrub arbitrarily through the data. Additionally, we
plan to highlight faults more explicitly, by drawing them
on the detail graphs. Unfortunately, the charting library
we used for our demonstration suffered in performance.
We were able to ameliorate the problem through adjusting
timings, but plan to move to drawing charts and other intense
visualizations with HTML5 Canvas, in order to increase
efficiency and to allow us to display data in real time, with
more complex charting. We also wish to explore allowing the
user to customize the interface. This may take the form of
a configuration that they specify, or may consist of window
adjustments on the page. Customization may include features
such as pinned graphs, changing the size of elements, and
repositioning modules. In the future, we plan to apply this
system to actual aerospace systems in order to iterate on its
functionality and fix issues encountered by human operators
using it for their work. Future extensions inspired by this
area may include adding 3D visualizations for systems with
clear physical analogs (e.g., mechanical systems), as well
as adding the ability to have additional data annotation, both
automated and human-initiated. All of these changes have the
potential to assist users in searching the data, and diagnosing
faults, and thus merit exploration.

VI. CONCLUSION

Our work showed that an extensible, yet generic, interface
for facilitating fault diagnosis across telemetry data sets
is feasible, and simple knowledge about the data and its
interrelationships can be conveyed very quickly through
certain design choices. It remains to be proven if the tools
provided are adequate for advanced data discovery with
extremely complicated issues and extremely large data chan-
nel hierarchies; however, during the system’s short phase
of development it has already shown much progress and
received interest from scientists and engineers within the
space industry. Our work has shown that there is still much
room for improvement in this area, and we hope to continue
development looking forward in order to make a product that
can benefit monitoring and troubleshooting for a wide array
of complex systems.

VII. ACKNOWLEDGMENTS

We would like to acknowledge and thank the developers
of the software tools we used to make our project:

• C3.js
• qTip2
• Bootstrap
• jQuery
• Mike Bostock (D3 and various inspirational applets)
In addition, we would like to thank Dr. Jeff Heer and

the teaching assistants of UW’s Spring 2015 CSE 512 Data
Visualization course for their advice and feedback.

REFERENCES

[1] Cancro, G.; Turner, R.; Nguyen, L.; Li, A.; Sibol, D.; Gersh, J.; Piatko,
C.; Montemayor, J.; McKerracher, P., ”An Interactive Visualization
System for Analyzing Spacecraft Telemetry,” Aerospace Conference,
2007 IEEE , vol., no., pp.1,9, 3-10 March 2007.

[2] A. Willsky, ”A Survey of Design Methods for Failure Detection in
Dynamic Systems,” Automatica, 1976.

[3] Yairi, T.; Kawahara, Y.; Fujimaki, R.; Sato, Y.; Machida, K.,
”Telemetry-mining: a machine learning approach to anomaly detection
and fault diagnosis for space systems,” Second IEEE International
Conference on Space Mission Challenges for Information Technology,
2006.


