Seein’ In:
Peering into the depths of the convolutional neural network
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Fig. 1. The Seein’ In user interface

Abstract—This paper presents Seein’ In, an interactive tool for visualizing trained convolutional neural networks. The core visualiza-
tion is a layer-by-layer scatter plot matrix, plotting pairs of dimensions of the intermediate feature maps produced by the network given
a large input dataset. This display is coordinated with another display showing at once all activations produced by a single image, or
the average activation produced by a subset of the images. A variety of navigation techniques support and encourage exploration of
the vast amount of data contained in these displays. This tool should prove useful for machine learning researchers wishing to make
more informed decisions about network architectures and learning parameters.
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1 INTRODUCTION
Convolutional neural networks, or CNNs, have been arounddde

one specific network can be frustratingly difficult to grasphis is

some time §]. However, just in they last few years they have enjoyeéssentially a problem of dimensionality; applied to corepwision,

a massive increase in popularity, due in part to the aburedaigaral-
lel computation resources available with modern graphiosegssing

for example, the input space is generally an image, the septation
of which can easily stretch into the tens of thousands of dsioas.

units (GPUs) as well as their success on the ImageNet Largke ScGiven the high dimensionality of the data and depth of thevasks
Visual Recognition Challengel]. Part of a larger recent trend within typically used in the vision domain, it's not uncommon to sewvorks

the machine learning community towards so-called ‘Deepriag,’
the CNN model is in essence a hierarchical decompositioneogen-
eral problem of learning a function from an input space to atpat
space. The function proceeds in stages or ‘layers,’ in waiolimber
of ‘hidden’ intermediate representations of the input ammputed as
a function of the previous layer’'s representation, begignvith the
input itself, until the output layer is reached. These fior are de-
fined by a collection of weights or parameters which are kedifrom
a large corpus of data.

While the architecture of the CNN is rather straightforwart
easy enough to understand in general, the results produceahyb
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with tens of millions of parameters in the literature. Notgsisingly,
even when networks perform objectively well, it is extreyneifficult
even for the researchers who designed them to describertbedi it
has learned with any degree of specificity.

As a direct result, decisions about the architecture of svardt
or the parameters used in the learning algorithm that détesrits
weights are generally made with little to no insight as to tlogy will
affect the internal workings of the network. This leads toatvhas
been described as ‘graduate student descent,’ a procéswhiith the
author is himself all too familiar, in which a graduate studmakes
iterative changes to the network or its learning parametecs ob-
serves the effect on some performance measure, aiming rease
performance by improving on the networks that perform b&stad-
uate student descent, of course, typically has the saméepnstwith
local minima as automated gradient descent methods, amdagyi
case neither enjoyable nor intellectually stimulating.



Fig. 2. The embedding view, which can show data with anywhere from
two (left) to twenty (right) or more dimensions.

The goal of this project is to do better. With Seein’ In, corgou
vision practitioners can directly observe the internalkimys of their
networks by seeing how a set of images is represented in atheof
intermediate layers, in essence uncovering the ‘hiddeerka The di-
mensionality problem is addressed using a scatter plotixrfatriay-
ers of dimensionality greater than two, where every dinwnsi the
representation is plotted against every other dimensiohilehese
matrices quickly become very large, overwhelming, and suna¢
difficult to parse, the hope is that any using window into teéxork
operation is better than treating it purely as a black boxn&sepecific
potential usages of the tool will be outlined in a case studyection
4. In addition to the core visualization of raw, high-dimensl data,
the tool also incorporates a number of basic visualizatidncjples
such as brushing and linking, focus+context, details onatemand
multiple coordinated displays as will be discussed secBoafter a
brief review of related work.

2 RELATED WORK

A traditional approach to visualizing convolutional ndunatworks
involves selecting a particular feature of interest (e.gingle dimen-
sion of the output responsible for a particular class labehe case
of a classification network), and computing the input thatilddead
that feature to have a maximal value. This technique hastigdeeen
used by Le et al. §] and by Simonyan et al.7], where soft or hard
constraints on the magnitude of the input are also enforcehsure
regularity. In the former, this is coupled with a visualipat showing
a collection of actual input images which cause the featfiisterest
to be activated most strongly. In the latter, the authors piesent the
ability to generate a saliency map showing how importanh guxel
in a particular input image is to its classification.

While these visualizations are compelling and do teach nseso
thing about the corresponding networks, their use is lichltg the
fact that they are still treating the network as a black bbg;rietwork
is simply being driven backwards such that inputs are predumys-
teriously from outputs rather than the usual outputs beirglyced
mysteriously from inputs. Zeiler and Ferg} attacked this problem
by using a similar approach to the saliency map, but for amedsion
at any layer in the network, including the intermediate espntations
or ‘feature maps.’ This allows the viewer to see how higreldea-
tures might be constructed from lower-level features. Byptiog this
technique with the N-highest activation technique, theywsh num-
ber of image patches that fire most strongly at internal net\ayers
in an attempt to tease out what the individual dimensionséninter-
mediate representations mighéan.

Meanwhile, there has been some previous work on interaictole
for CNN visualization, most notably deepViz by Bruckner et[d].
They built a server-client system for online visualizatafra learned
network, allowing a number of user interactions:

. The user can view images from the dataset clustered by Eu-
clidean distance in the last layer of the network.

. The user can select two points in time and see the netwerk pa
rameters as learned at those points in time, side by side.

This system also allows for some degree of introspection int
the network as they are able to directly display the featuapsras
grayscale images. However, the feature maps are incrediffisult to
interpret in this format, especially at higher levels, véhdrey mostly
appear gray and blob-like. However, the interactivity af #ystem is
compelling, as it allows the user to pick out from the massiveunt
of data exactly what they are interested in learning moreiabo

Seein’ In incorporates the interactivity and feature mapldiys of
deepViz, while also pushing the introspective powers ofipres work
by showing how a large number of images map onto any of the fea-
ture dimensions. As a result, investigating any partictéature is as
easy as looking at which images map to which parts of the wario
representation spaces.
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In contrast to the web-based (and therefore highly distaitle) plat-
form of deepViz, Seein’ Inis a standalone C++ application.giing
up the broad distribution of a web application, we gain thiitgtio
push the graphics rendering pipeline to the limit by rentprmassive
amounts of data using low-level OpenGL calls. FurthermdeepViz
assumes the data and trained network are already residersamer,
whereas a user wishing to inspect her own network and/onvdaiiéd
be required to perform bandwidth-intensive uploads.

Seein’ In interfaces with the popular CNN implementatioaffe’
[3]. To use the tool, a user must first define her network as spddifi
caffe and train the network. The learned weights will autbcadly be
saved by caffe. This weight file and the network specificafilerare
then passed to Seein’ In to launch the interface, along wtbiater to
the test images to be displayed, and some additional infa@mauch
as the image class labels and class hames, if applicable.

INTERFACE

3.1 The Embedding View

At the core of Seein’ In is the embedding view, centrally kecbin the
interface shown in figurd, so called because the intermediate repre-
sentation of the dataset in any layer of the network can beedeas
an embedding of the data into the representation space. yAgiaen
point in time, the embedding view shows the input data asssmted
in the active layer, which can be any layer in the network. énejing
on the dimensionality of the representation in the actiyeraghe em-
bedding view will show either a two dimensional scatter ploaD by
D matrix of scatter plots, wher® is the dimensionality. Both cases
are shown in figure.

In the case of the scatter plot matrix, each individual eimrthe
matrix plots one dimension of the representation againsthan; that

1. The user can select an image, and then select any layee in kfig- 3. The receptive field associated with a representation of an MNIST

network to visualize the feature map for that image at thagrla digit. Note that features firing for this particular receptive field could
equally point towards identification as a two or a seven, and that further

2. The user can view the confusion matrix, seeing which elags context will need to be incorporated in further layers to disambiguate the
the dataset are confused with which other classes and hew. oftdigit.



3.3 Coordinated Feature Map Display

In addition to seeing the image associated with a data pibiatuser
may be interested in how that image is represented in otlyerda

or even in other dimensions of the same layer that are ciyrefit

the screen. To facilitate such explorations, there is aifeanap view
coordinated with the embedding view, as shown on the riglet af the
interface in figurel. Clicking on an image will update the feature map
view to show the response in every feature map in the entirgank

for the selected digit (the view can be scrolled and zooméduhtalle
extremely large networks). This is similar to the deepVieiface, but
more extensive, as deepViz shows only one layer of featupsraa
time. In addition, selecting multiple images will computelalisplay
the average response for the set of images at every layer, including
the input, as in figurd. Structured feature maps are shown as images
in a grid, with one image per depth dimension of the featur@.ma

Fig. 4. The average input and average first layer response for every 8 in
the MNIST test set.

is, the entry in the second row, third column will plot ther¢hdimen-
sion on the x axis and the second dimension on the y axis. Blurg

the diagonal, we have straights lines, as a dimension plagainst it-
self results in a one dimensional dot plot. The plots arenged such
that all plots in a row share a y axis and all plots in a columarstan
X axis.

For each image, there is an associated vector of leDdt the ac-
tive layer, which is determined by the function the netwaoak fkearned
to map from the image space to the output space. Therefoad) iy
D scatter plot matrix, each image appeBrstimes, once per plot (or
sometimes more, as will be explained shortly). The pointeeiated
with an image are colored according to the class label ofittagye, as
specified by the user. If there are no labels in the datasetjata are
simply shown in the same color.

Unstructured maps are simply shown as single-pixel images.

The feature map display can likewise be used to navigatemnittie
embedding view. Clicking on the name of any layer in the featnap
display will update the currently active layer in the embaddview
accordingly. Clicking on a particular pixel in a feature niagage will
do the same but additionally navigate the user to the sqatieon the
diagonal of the matrix associated with that feature.

3.4 Focus + Context

Because the size of the scatter plot matrices can becomévmasth
even moderately large dimensionality of embeddings, sameegt is
required to ensure the user does not get completely losteirdéta.

The embedding view is endowed with traditional pan and zoomherefore, an overview of the entire matrix for the actielais ren-

navigation to enable exploration of the data at varyingescBhe point
size can be adjusted to trade off between density estimatidrpoint
resolution.

3.2 Details on Demand

Given a scatter plot showing the representations of a langeber of
images, a user may naturally desire to get more informatiouthe
image associated with a particular data point. Hoveringribase over
a data point in the embedding view will display the image eisged
with that point, as can be seen in figure Now for a quick aside on
structured representations and receptive fields.

Receptive Fields

One of the key insights of the convolutional aspect of the CiNIN
weight sharing — that is, that a learned function for recaig a
particular pattern in, for example, an 8 pixel by 8 pixel sgion of
an input image is equally applicable to recognizing the spateern
in another part of the image. When using convolutions, rathan

dered and shown to the left of the embedding view, as showgumefi
1. Abox on the overview shows the current viewport in the enaliregl
view, and dragging or scrolling in the overview performs tuere-
sponding navigation in the embedding view as well. Becausastale
changes can span multiple orders of magnitude, the boxssgto a
crosshairs overlay showing only the viewport center oneaeuer has
zoomed in so far that a box would not be resolvable.

3.5 Brushing and Linking

Seein’ In also supports the brushing and linking techniquehalyz-
ing data shown in multiple displays. The user can selecttpaine at
a time, using an arbitrarily drawn polygon with the lassal,t@o by

class label. If there is a selection, unselected points ax@enmore
faint and smaller while selected points are made largetthEtmore,
the render order is modified such that selected points aréiddéen
behind unselected points in dense displays. Once madeegctisal
is linked across all scatter plots in all layers, as showngaré5, al-

lowing the user to select points of interest and see theresgmtation
throughout the network.

having a simpleD dimensional representation in the resulting featur8 Discussion

map, as is the case of the fully-connected layers of traditioeural
networks, we actually have structured representatiorigtieanselves
have a widthV and heighH in addition to depttD (think of an RGB

To evaluate the potential utility of Seein’ In, we’ll exposome inter-
esting aspects of a particular network that are broughgtd through

color image with depttD = 3). Each entry in the feature map has

associated with it a receptive field, which is the subregiothe orig-
inal input that influenced or could have influenced that vaitithe
map via all intermediate layers (thus the receptive fielcheffeature
maps are monotonically increasing as information propesgttrough
the network). Receptive fields are constant acrosBttEnension but

vary along théV andH dimensions. One way to view an embedding

in these intermediate layers is to simply unwrap the featump into

a lengthD x W x H vector. Seein’ In takes a different approach by

instead interpreting an input image as represented in etstad fea-

ture map (i.e. one in whictW and/orH are greater than 1) as having
W x H distinct embeddings in a shar&@ldimensional space. Thus,
when a user hovers over a point in a layer with a structuredeeimb
ding, the point is associated not with an entire image but wipart

of the image. This is shown to the user in a bounding box as sliow Fig. 5. A selection of points, shown across multiple plots in the same
figure 3. (right) and different layers.




Fig. 7. The effect of the rectified linear unit: embeddings are constrained
to the first quadrant of all scatter plots.

Fig. 6. A number of degenerate digits cluster around the origin of the
two dimensional output embedding.

surely makes the job of separating ‘1's from everything eiseh eas-
ier upstream. I'll hypothesize that this is happening bsedl’'s more
or less require a very simple edge detection which can be ooae

its introspective powers. This specific network was designeHad-
sell et al. to map images from the MNIST dataset, a colleaticiens
of thousands of images of handwritten digits, into a two digienal

space, with the goal of mapping instances of the same digite&ch
other but separated from instances of every other d&}it The net-
work was taken directly from the ‘siamese’ example in caffe.

layer or two, whereas other digits are more complicated coations
of lines and curves. This might suggest that a we would bebeft
with a deeper network, such that other digits might have achao

In fact, this is the data that has been used for all images sho@chieve similarly tight lower-level clustering.
herein. The data points are colored according to which thigiimage ]
depicts, as shown in the interface legend in figlréThe images are 4.3 Feature Interpretation

28 by 28 pixels, and there are 10,000 test images which theorlet |magine now that the user clicks the ‘1’ row in the legend, siag
does not get to see at training time. It is these images whighised 5| ‘1’s to be selected and causing the feature map view tovshe
for the analysis. The network has 7 layers: a convolutioy@lipg,  average feature maps for all instances of the digit. Oneytsite may
another convolution, another pooling, and finally thre¢/fobnnected potice is that there are few features produced by the firgtripnod-
layers. There.ls only one non-linearity: a rectified lineait l(leLU) uct layer which fire quite strongly, on average, for the insés of the
between the first fully connected layer and the second, wéeth all  gigit ‘1’ as indicated by their brightness relative to sumding fea-
negative feature responses to zero. tures. Clicking on one of these features will transport lethe one
o dimensional dot plot showing where all 10,000 images map tris
4.1 Degenerate Digits one dimension in this particular feature map. The first thsing might
We'll start our analysis with the final result of the netwofts you can  hotice is that not only is this feature activated stronglynyst ‘1's, it
see from the 2D scatter plot in figuethe images cluster quite nicely is also rarely activated strongly by any other digit.
by label and are fairly well separated. A closer inspectiwwever, Our user can now drill down further, using the lasso tool tecte
shows that there is one cluster that seems more permeatedtvér only the images that cause this feature to be activated rrastgsy.
digits than other clusters, which are otherwise rathengléas is the This result is shown in the top of figus with the selection shown
‘8’ cluster. It also so happens that the ‘8’ cluster is sitaatlosest to at left and the average digit shown at right. It seems thatfeémture
the origin of the embedding space. I'll hypothesize thatoreuption is activated most strongly by not just any instance of thé dig but
of this cluster is due to what I'll call degenerate digits —esh are more specifically by instances with a strong slant towaresright.
digits which have something which is at least subjectivelgng with  Moving down towards more moderately activating imagesdsedeow
them and therefore are on the tails of the distribution osfie digits. in figure9), we see an average image of a more upright ‘1. Finally,
It is unlikely that the network saw anything like these digithile ~more towards the middle we see an average images which sedms t
training. A sampling of such digits can be seen in figreWith ~a number of ‘1’s slanting back the other way, with some ‘7'd &8is
no training to go on, one might expect a roughly mean-zerpuiut mixed in giving a faint crossing line. This is fascinating —e weem
resulting in a corruption of the ‘8’ cluster which is nearéis¢ zero to have discovered a single intermediate feature whichdwm®siéd to
vector. This seems to visually highlight a deficiency in tietwork, encode the slant of a drawing of the digit ‘1"!
which is the fact that it has no way to encode uncertainty o
embedding of a particular digit.

4.2 Uneven Clustering Performance

Similarly, there is a cluster which appears to have much Ismeari-
ance than all the others, an indicator of greater recogniiiothe net-
work. This is the ‘1’ cluster. In order to see why this is, Welelve
deeper into the network. Shown in figuds a scatter plot showing
two out of the 50 dimensions of the feature map produced bgele
ond pooling layer, before entering the fully connected tayé&or the
most part, the digits seem fairly thoroughly intermixedcegpting for
one visually obvious dense cluster of blue points (‘1's)veting over
these points reveals that they are predominantly subregibimages
with a vertical line on the right and nothing to the left — atfea
which fires very frequently for ‘1’s, fairly often for ‘7’s,ral less fre-
quently for other digits. This clustering mid-way throudjie thetwork

Fig. 8. A scatter plot demonstrates a part of representation space that
is dominated by subregions from drawings of the digit ‘1’.



Fig. 9. Selections of different regions of an intermediate feature (left)
show average images (right) with angles related to the feature value.

4.4 Network Trade-offs

Another visually striking effect in this data is the vastfeience in
the appearance of the feature maps produced by the firstpnoguct
layer and all other feature maps. This is due to the rectifiegl units
causing all points to lie in the first quadrant of all scattets It seems
to be that the ReLU allows this layer of the network to devejopips
of features that fire together for one or two classes to thkisxmn of
all others, as can be seen in figuteThis might lead one to wonder
what would happen without the rectification. To find out, Wikt
train a new network without the ReLU layer and see what hagpen
The feature maps produced by the first inner product laydrodvil
course look completely different as the data will again @gcall four
quadrants of the scatter plots. The final output embeddindymed
by the third fully connected layer is not as well separatethefere,
but it looks similar (not surprising, as it is directly encaged to do
so by the loss function). What is interesting is the effectransecond
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Fig. 10. The output feature maps of the second fully connected layer
with (left) and without (right) the rectified linear units.

In with caffe such that the output of a network can be obsesweh
as it's being trained.

Another straightforward extension would be to see whatadel
done with 3D scatter plots. These are notoriously trickynteripret,
but with proper interaction (e.g. rotation), they couldyeaseful.

Finally, from the layer-by-layer scatter plots, it seenke lit is pos-
sible to try to gain some understanding of what certain festare
representing. However, what the current implementatioasdaot

help with is figuring outhow those representations are learned. One

straightforward extension would be to add support for caimngathe
representation in one feature map on one axis of a scattenye
trix against the representation in another layer on thera@kis. This
would give some sense of causality, showing which featurggaded
in earlier layers are correlated with features activatddtir layers.

In conclusion, I've presented an exploratory tool for inigesing
the internal workings of trained convolutional neural netks. The
key idea was to focus on showing large amounts of high-dimaas
data exactly as it is at every step in the process of mappamg finputs
to outputs. The amount of data can be overwhelming, but the e
that with the suite of interactive tools provided — detaifsdemand,
brushing and linking, focus+context, and coordinated|digp— users
will be able to begin to make some sense of what's happeniigen
their networks.
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