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Fig. 1. The Seein’ In user interface

Abstract—This paper presents Seein’ In, an interactive tool for visualizing trained convolutional neural networks. The core visualiza-
tion is a layer-by-layer scatter plot matrix, plotting pairs of dimensions of the intermediate feature maps produced by the network given
a large input dataset. This display is coordinated with another display showing at once all activations produced by a single image, or
the average activation produced by a subset of the images. A variety of navigation techniques support and encourage exploration of
the vast amount of data contained in these displays. This tool should prove useful for machine learning researchers wishing to make
more informed decisions about network architectures and learning parameters.

1 INTRODUCTION

Convolutional neural networks, or CNNs, have been around for quite
some time [6]. However, just in they last few years they have enjoyed
a massive increase in popularity, due in part to the abundance of paral-
lel computation resources available with modern graphics processing
units (GPUs) as well as their success on the ImageNet Large Scale
Visual Recognition Challenge [4]. Part of a larger recent trend within
the machine learning community towards so-called ‘Deep Learning,’
the CNN model is in essence a hierarchical decomposition of the gen-
eral problem of learning a function from an input space to an output
space. The function proceeds in stages or ‘layers,’ in whicha number
of ‘hidden’ intermediate representations of the input are computed as
a function of the previous layer’s representation, beginning with the
input itself, until the output layer is reached. These functions are de-
fined by a collection of weights or parameters which are learned from
a large corpus of data.

While the architecture of the CNN is rather straightforwardand
easy enough to understand in general, the results produced by any
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one specific network can be frustratingly difficult to grasp.This is
essentially a problem of dimensionality; applied to computer vision,
for example, the input space is generally an image, the representation
of which can easily stretch into the tens of thousands of dimensions.
Given the high dimensionality of the data and depth of the networks
typically used in the vision domain, it’s not uncommon to seenetworks
with tens of millions of parameters in the literature. Not surprisingly,
even when networks perform objectively well, it is extremely difficult
even for the researchers who designed them to describe the function it
has learned with any degree of specificity.

As a direct result, decisions about the architecture of a network
or the parameters used in the learning algorithm that determines its
weights are generally made with little to no insight as to howthey will
affect the internal workings of the network. This leads to what has
been described as ‘graduate student descent,’ a process with which the
author is himself all too familiar, in which a graduate student makes
iterative changes to the network or its learning parametersand ob-
serves the effect on some performance measure, aiming to increase
performance by improving on the networks that perform best.Grad-
uate student descent, of course, typically has the same problems with
local minima as automated gradient descent methods, and is in any
case neither enjoyable nor intellectually stimulating.



Fig. 2. The embedding view, which can show data with anywhere from
two (left) to twenty (right) or more dimensions.

The goal of this project is to do better. With Seein’ In, computer
vision practitioners can directly observe the internal workings of their
networks by seeing how a set of images is represented in any ofthe
intermediate layers, in essence uncovering the ‘hidden’ layers. The di-
mensionality problem is addressed using a scatter plot matrix for lay-
ers of dimensionality greater than two, where every dimension of the
representation is plotted against every other dimension. While these
matrices quickly become very large, overwhelming, and somewhat
difficult to parse, the hope is that any using window into the network
operation is better than treating it purely as a black box. Some specific
potential usages of the tool will be outlined in a case study in section
4. In addition to the core visualization of raw, high-dimensional data,
the tool also incorporates a number of basic visualization principles
such as brushing and linking, focus+context, details on demand, and
multiple coordinated displays as will be discussed section3, after a
brief review of related work.

2 RELATED WORK

A traditional approach to visualizing convolutional neural networks
involves selecting a particular feature of interest (e.g. asingle dimen-
sion of the output responsible for a particular class label in the case
of a classification network), and computing the input that would lead
that feature to have a maximal value. This technique has recently been
used by Le et al. [5] and by Simonyan et al. [7], where soft or hard
constraints on the magnitude of the input are also enforced to ensure
regularity. In the former, this is coupled with a visualization showing
a collection of actual input images which cause the feature of interest
to be activated most strongly. In the latter, the authors also present the
ability to generate a saliency map showing how important each pixel
in a particular input image is to its classification.

While these visualizations are compelling and do teach us some-
thing about the corresponding networks, their use is limited by the
fact that they are still treating the network as a black box; the network
is simply being driven backwards such that inputs are produced mys-
teriously from outputs rather than the usual outputs being produced
mysteriously from inputs. Zeiler and Fergus [8] attacked this problem
by using a similar approach to the saliency map, but for any dimension
at any layer in the network, including the intermediate representations
or ‘feature maps.’ This allows the viewer to see how high-level fea-
tures might be constructed from lower-level features. By coupling this
technique with the N-highest activation technique, they show a num-
ber of image patches that fire most strongly at internal network layers
in an attempt to tease out what the individual dimensions in the inter-
mediate representations mightmean.

Meanwhile, there has been some previous work on interactivetools
for CNN visualization, most notably deepViz by Bruckner et al. [1].
They built a server-client system for online visualizationof a learned
network, allowing a number of user interactions:

1. The user can select an image, and then select any layer in the
network to visualize the feature map for that image at that layer.

2. The user can view the confusion matrix, seeing which classes in
the dataset are confused with which other classes and how often.

3. The user can view images from the dataset clustered by Eu-
clidean distance in the last layer of the network.

4. The user can select two points in time and see the network pa-
rameters as learned at those points in time, side by side.

This system also allows for some degree of introspection into
the network as they are able to directly display the feature maps as
grayscale images. However, the feature maps are incrediblydifficult to
interpret in this format, especially at higher levels, where they mostly
appear gray and blob-like. However, the interactivity of the system is
compelling, as it allows the user to pick out from the massiveamount
of data exactly what they are interested in learning more about.

Seein’ In incorporates the interactivity and feature map displays of
deepViz, while also pushing the introspective powers of previous work
by showing how a large number of images map onto any of the fea-
ture dimensions. As a result, investigating any particularfeature is as
easy as looking at which images map to which parts of the various
representation spaces.

3 INTERFACE

In contrast to the web-based (and therefore highly distributable) plat-
form of deepViz, Seein’ In is a standalone C++ application. By giving
up the broad distribution of a web application, we gain the ability to
push the graphics rendering pipeline to the limit by rendering massive
amounts of data using low-level OpenGL calls. Furthermore,deepViz
assumes the data and trained network are already resident ona server,
whereas a user wishing to inspect her own network and/or datawould
be required to perform bandwidth-intensive uploads.

Seein’ In interfaces with the popular CNN implementation ‘caffe’
[3]. To use the tool, a user must first define her network as specified by
caffe and train the network. The learned weights will automatically be
saved by caffe. This weight file and the network specificationfile are
then passed to Seein’ In to launch the interface, along with apointer to
the test images to be displayed, and some additional information such
as the image class labels and class names, if applicable.

3.1 The Embedding View

At the core of Seein’ In is the embedding view, centrally located in the
interface shown in figure1, so called because the intermediate repre-
sentation of the dataset in any layer of the network can be viewed as
an embedding of the data into the representation space. At any given
point in time, the embedding view shows the input data as represented
in the active layer, which can be any layer in the network. Depending
on the dimensionality of the representation in the active layer, the em-
bedding view will show either a two dimensional scatter plotor aD by
D matrix of scatter plots, whereD is the dimensionality. Both cases
are shown in figure2.

In the case of the scatter plot matrix, each individual entryin the
matrix plots one dimension of the representation against another; that

Fig. 3. The receptive field associated with a representation of an MNIST
digit. Note that features firing for this particular receptive field could
equally point towards identification as a two or a seven, and that further
context will need to be incorporated in further layers to disambiguate the
digit.



Fig. 4. The average input and average first layer response for every 8 in
the MNIST test set.

is, the entry in the second row, third column will plot the third dimen-
sion on the x axis and the second dimension on the y axis. Thus,along
the diagonal, we have straights lines, as a dimension plotted against it-
self results in a one dimensional dot plot. The plots are arranged such
that all plots in a row share a y axis and all plots in a column share an
x axis.

For each image, there is an associated vector of lengthD for the ac-
tive layer, which is determined by the function the network has learned
to map from the image space to the output space. Therefore, inaD by
D scatter plot matrix, each image appearsD2 times, once per plot (or
sometimes more, as will be explained shortly). The points associated
with an image are colored according to the class label of the image, as
specified by the user. If there are no labels in the dataset, the data are
simply shown in the same color.

The embedding view is endowed with traditional pan and zoom
navigation to enable exploration of the data at varying scale. The point
size can be adjusted to trade off between density estimationand point
resolution.

3.2 Details on Demand

Given a scatter plot showing the representations of a large number of
images, a user may naturally desire to get more information about the
image associated with a particular data point. Hovering themouse over
a data point in the embedding view will display the image associated
with that point, as can be seen in figure1. Now for a quick aside on
structured representations and receptive fields.

Receptive Fields

One of the key insights of the convolutional aspect of the CNNis
weight sharing — that is, that a learned function for recognizing a
particular pattern in, for example, an 8 pixel by 8 pixel subregion of
an input image is equally applicable to recognizing the samepattern
in another part of the image. When using convolutions, rather than
having a simpleD dimensional representation in the resulting feature
map, as is the case of the fully-connected layers of traditional neural
networks, we actually have structured representations that themselves
have a widthW and heightH in addition to depthD (think of an RGB
color image with depthD = 3). Each entry in the feature map has
associated with it a receptive field, which is the subregion of the orig-
inal input that influenced or could have influenced that valueof the
map via all intermediate layers (thus the receptive field of the feature
maps are monotonically increasing as information propagates through
the network). Receptive fields are constant across theD dimension but
vary along theW andH dimensions. One way to view an embedding
in these intermediate layers is to simply unwrap the featuremap into
a lengthD×W ×H vector. Seein’ In takes a different approach by
instead interpreting an input image as represented in a structured fea-
ture map (i.e. one in whichW and/orH are greater than 1) as having
W ×H distinct embeddings in a sharedD dimensional space. Thus,
when a user hovers over a point in a layer with a structured embed-
ding, the point is associated not with an entire image but with a part
of the image. This is shown to the user in a bounding box as shown in
figure3.

3.3 Coordinated Feature Map Display

In addition to seeing the image associated with a data point,the user
may be interested in how that image is represented in other layers,
or even in other dimensions of the same layer that are currently off
the screen. To facilitate such explorations, there is a feature map view
coordinated with the embedding view, as shown on the right side of the
interface in figure1. Clicking on an image will update the feature map
view to show the response in every feature map in the entire network
for the selected digit (the view can be scrolled and zoomed tohandle
extremely large networks). This is similar to the deepViz interface, but
more extensive, as deepViz shows only one layer of feature maps at a
time. In addition, selecting multiple images will compute and display
the average response for the set of images at every layer, including
the input, as in figure4. Structured feature maps are shown as images
in a grid, with one image per depth dimension of the feature map.
Unstructured maps are simply shown as single-pixel images.

The feature map display can likewise be used to navigate within the
embedding view. Clicking on the name of any layer in the feature map
display will update the currently active layer in the embedding view
accordingly. Clicking on a particular pixel in a feature mapimage will
do the same but additionally navigate the user to the scatterplot on the
diagonal of the matrix associated with that feature.

3.4 Focus + Context

Because the size of the scatter plot matrices can become massive with
even moderately large dimensionality of embeddings, some context is
required to ensure the user does not get completely lost in the data.
Therefore, an overview of the entire matrix for the active layer is ren-
dered and shown to the left of the embedding view, as shown in figure
1. A box on the overview shows the current viewport in the embedding
view, and dragging or scrolling in the overview performs thecorre-
sponding navigation in the embedding view as well. Because the scale
changes can span multiple orders of magnitude, the box switches to a
crosshairs overlay showing only the viewport center once the user has
zoomed in so far that a box would not be resolvable.

3.5 Brushing and Linking

Seein’ In also supports the brushing and linking technique for analyz-
ing data shown in multiple displays. The user can select points one at
a time, using an arbitrarily drawn polygon with the lasso tool, or by
class label. If there is a selection, unselected points are made more
faint and smaller while selected points are made larger. Furthermore,
the render order is modified such that selected points are nothidden
behind unselected points in dense displays. Once made, a selection
is linked across all scatter plots in all layers, as shown in figure5, al-
lowing the user to select points of interest and see their representation
throughout the network.

4 DISCUSSION

To evaluate the potential utility of Seein’ In, we’ll explore some inter-
esting aspects of a particular network that are brought to light through

Fig. 5. A selection of points, shown across multiple plots in the same
(right) and different layers.



Fig. 6. A number of degenerate digits cluster around the origin of the
two dimensional output embedding.

its introspective powers. This specific network was designed by Had-
sell et al. to map images from the MNIST dataset, a collectionof tens
of thousands of images of handwritten digits, into a two dimensional
space, with the goal of mapping instances of the same digit near each
other but separated from instances of every other digit [2]. The net-
work was taken directly from the ‘siamese’ example in caffe.

In fact, this is the data that has been used for all images shown
herein. The data points are colored according to which digitthe image
depicts, as shown in the interface legend in figure1. The images are
28 by 28 pixels, and there are 10,000 test images which the network
does not get to see at training time. It is these images which are used
for the analysis. The network has 7 layers: a convolution, a pooling,
another convolution, another pooling, and finally three fully connected
layers. There is only one non-linearity: a rectified linear unit (ReLU)
between the first fully connected layer and the second, whichsets all
negative feature responses to zero.

4.1 Degenerate Digits

We’ll start our analysis with the final result of the network.As you can
see from the 2D scatter plot in figure2, the images cluster quite nicely
by label and are fairly well separated. A closer inspection,however,
shows that there is one cluster that seems more permeated with other
digits than other clusters, which are otherwise rather clean; this is the
‘8’ cluster. It also so happens that the ‘8’ cluster is situated closest to
the origin of the embedding space. I’ll hypothesize that thecorruption
of this cluster is due to what I’ll call degenerate digits — these are
digits which have something which is at least subjectively wrong with
them and therefore are on the tails of the distribution of possible digits.
It is unlikely that the network saw anything like these digits while
training. A sampling of such digits can be seen in figure6. With
no training to go on, one might expect a roughly mean-zero output,
resulting in a corruption of the ‘8’ cluster which is nearestthe zero
vector. This seems to visually highlight a deficiency in the network,
which is the fact that it has no way to encode uncertainty about the
embedding of a particular digit.

4.2 Uneven Clustering Performance

Similarly, there is a cluster which appears to have much smaller vari-
ance than all the others, an indicator of greater recognition by the net-
work. This is the ‘1’ cluster. In order to see why this is, we’ll delve
deeper into the network. Shown in figure8 is a scatter plot showing
two out of the 50 dimensions of the feature map produced by thesec-
ond pooling layer, before entering the fully connected layers. For the
most part, the digits seem fairly thoroughly intermixed, excepting for
one visually obvious dense cluster of blue points (‘1’s). Hovering over
these points reveals that they are predominantly subregions of images
with a vertical line on the right and nothing to the left — a feature
which fires very frequently for ‘1’s, fairly often for ‘7’s, and less fre-
quently for other digits. This clustering mid-way through the network

Fig. 7. The effect of the rectified linear unit: embeddings are constrained
to the first quadrant of all scatter plots.

surely makes the job of separating ‘1’s from everything elsemuch eas-
ier upstream. I’ll hypothesize that this is happening because ‘1’s more
or less require a very simple edge detection which can be donein a
layer or two, whereas other digits are more complicated combinations
of lines and curves. This might suggest that a we would be better off
with a deeper network, such that other digits might have a chance to
achieve similarly tight lower-level clustering.

4.3 Feature Interpretation

Imagine now that the user clicks the ‘1’ row in the legend, causing
all ‘1’s to be selected and causing the feature map view to show the
average feature maps for all instances of the digit. One thing she may
notice is that there are few features produced by the first inner prod-
uct layer which fire quite strongly, on average, for the instances of the
digit ‘1’, as indicated by their brightness relative to surrounding fea-
tures. Clicking on one of these features will transport her to the one
dimensional dot plot showing where all 10,000 images map onto this
one dimension in this particular feature map. The first thingshe might
notice is that not only is this feature activated strongly bymost ‘1’s, it
is also rarely activated strongly by any other digit.

Our user can now drill down further, using the lasso tool to select
only the images that cause this feature to be activated most strongly.
This result is shown in the top of figure9, with the selection shown
at left and the average digit shown at right. It seems that this feature
is activated most strongly by not just any instance of the digit ‘1’, but
more specifically by instances with a strong slant towards the right.
Moving down towards more moderately activating images (second row
in figure9), we see an average image of a more upright ‘1’. Finally,
more towards the middle we see an average images which seems to be
a number of ‘1’s slanting back the other way, with some ‘7’s and ‘8’s
mixed in giving a faint crossing line. This is fascinating — we seem
to have discovered a single intermediate feature which has learned to
encode the slant of a drawing of the digit ‘1’!

Fig. 8. A scatter plot demonstrates a part of representation space that
is dominated by subregions from drawings of the digit ‘1’.



Fig. 9. Selections of different regions of an intermediate feature (left)
show average images (right) with angles related to the feature value.

4.4 Network Trade-offs
Another visually striking effect in this data is the vast difference in
the appearance of the feature maps produced by the first innerproduct
layer and all other feature maps. This is due to the rectified linear units
causing all points to lie in the first quadrant of all scatter plots. It seems
to be that the ReLU allows this layer of the network to developgroups
of features that fire together for one or two classes to the exclusion of
all others, as can be seen in figure7. This might lead one to wonder
what would happen without the rectification. To find out, we’ll just
train a new network without the ReLU layer and see what happens!

The feature maps produced by the first inner product layer will of
course look completely different as the data will again occupy all four
quadrants of the scatter plots. The final output embedding produced
by the third fully connected layer is not as well separated asbefore,
but it looks similar (not surprising, as it is directly encouraged to do
so by the loss function). What is interesting is the effect onthe second
fully connected layer, shown in figure10. These embeddings appear
quite different, with the mapping computed without the ReLUriddled
with linear dependences between features, a highly undesirable trait of
a network.

This example brings us back to the original motivation for Seein’
In — in this example, the input was the same, one parameter was
changed, and the output was quantitatively worse but appears simi-
lar. With graduate student descent, the unfortunate graduate student
would simply carry on with the network with the ReLU and discard
the network without. With Seein’ In, CNN researchers can hopefully
gain some insight as to how parameters are affecting the internals of
their networks and make more informed decisions about how tomove
forward.

5 CONCLUSION

There are a variety of directions to take for future work. TheA/B
comparison of two networks is a compelling use case, but currently
requires running two different instances of the interface.It would be
nice to be able to load two sets of weights simultaneously such that
navigation and/or selection can be automatically coordinated between
the displays of both networks. Similarly, it would be nice toadd a
temporal feature as exists in deepViz, with which a user can hit a play
button or a stepper to see how their network evolves over time. In the
extreme, one can even imagine a more thorough integration ofSeein’

Fig. 10. The output feature maps of the second fully connected layer
with (left) and without (right) the rectified linear units.

In with caffe such that the output of a network can be observedeven
as it’s being trained.

Another straightforward extension would be to see what could be
done with 3D scatter plots. These are notoriously tricky to interpret,
but with proper interaction (e.g. rotation), they could prove useful.

Finally, from the layer-by-layer scatter plots, it seems like it is pos-
sible to try to gain some understanding of what certain features are
representing. However, what the current implementation does not
help with is figuring outhow those representations are learned. One
straightforward extension would be to add support for comparing the
representation in one feature map on one axis of a scatter plot ma-
trix against the representation in another layer on the other axis. This
would give some sense of causality, showing which features activated
in earlier layers are correlated with features activated inlater layers.

In conclusion, I’ve presented an exploratory tool for investigating
the internal workings of trained convolutional neural networks. The
key idea was to focus on showing large amounts of high-dimensional
data exactly as it is at every step in the process of mapping from inputs
to outputs. The amount of data can be overwhelming, but the hope is
that with the suite of interactive tools provided – details on demand,
brushing and linking, focus+context, and coordinated displays – users
will be able to begin to make some sense of what’s happening inside
their networks.
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